TianyiQ's picture
Upload folder using huggingface_hub
070fb7b verified
|
raw
history blame
2.14 kB
metadata
license: other
base_model: meta-llama/Meta-Llama-3-8B
tags:
  - llama-factory
  - full
  - generated_from_trainer
model-index:
  - name: C017_random_sample_llama3-8b-base_instruct_20240504_182259
    results: []

C017_random_sample_llama3-8b-base_instruct_20240504_182259

This model is a fine-tuned version of ./output/training_results/C017_random_sample_llama3-8b-base_pretrain_20240504_182259/ on the instructions_curated dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8518

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1.5e-05
  • train_batch_size: 8
  • eval_batch_size: 16
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • total_train_batch_size: 64
  • total_eval_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: polynomial
  • lr_scheduler_warmup_steps: 20
  • num_epochs: 4.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
0.8222 0.4167 20 0.8593
0.8014 0.8333 40 0.8518
0.4422 1.25 60 0.8722
0.4551 1.6667 80 0.8555
0.3806 2.0833 100 0.8530
0.4011 2.5 120 0.8577
0.37 2.9167 140 0.8622
0.3626 3.3333 160 0.8659
0.3708 3.75 180 0.8687

Framework versions

  • Transformers 4.40.1
  • Pytorch 2.3.0
  • Datasets 2.19.0
  • Tokenizers 0.19.1