training_ner_0.0 / README.md
procit008's picture
Upload tokenizer
8974d18 verified
metadata
base_model: bert-base-uncased
library_name: transformers
license: apache-2.0
metrics:
  - precision
  - recall
  - f1
  - accuracy
tags:
  - generated_from_trainer
model-index:
  - name: NER_training_base_uncased_with_randomization
    results: []

NER_training_base_uncased_with_randomization

This model is a fine-tuned version of bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0472
  • Precision: 0.9550
  • Recall: 0.9576
  • F1: 0.9563
  • Accuracy: 0.9849

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 32
  • seed: 12
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.0508 1.0 9836 0.0472 0.9550 0.9576 0.9563 0.9849
0.035 2.0 19672 0.0473 0.9590 0.9644 0.9617 0.9870
0.021 3.0 29508 0.0537 0.9592 0.9636 0.9614 0.9870

Framework versions

  • Transformers 4.45.1
  • Pytorch 2.4.0
  • Datasets 3.0.1
  • Tokenizers 0.20.0