Pageee's picture
End of training
d54338b verified
metadata
language:
  - en
base_model: distil-small.en
tags:
  - generated_from_trainer
datasets:
  - librispeech_asr
metrics:
  - wer
model-index:
  - name: DistilFT-English-10m
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: librispeech
          type: librispeech_asr
          config: default
          split: None
          args: 'config: en, split: test-clean'
        metrics:
          - name: Wer
            type: wer
            value: 3.5814019853645607

DistilFT-English-10m

This model is a fine-tuned version of distil-small.en on the librispeech dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5012
  • Wer: 3.5814

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-07
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 300
  • training_steps: 1000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.5641 33.3333 100 0.9641 3.4754
0.3271 66.6667 200 0.7822 3.4652
0.0871 100.0 300 0.5731 3.4530
0.0149 133.3333 400 0.5142 3.4774
0.0043 166.6667 500 0.5051 3.5345
0.0026 200.0 600 0.5030 3.5569
0.002 233.3333 700 0.5020 3.5671
0.0016 266.6667 800 0.5015 3.5773
0.0014 300.0 900 0.5013 3.5936
0.0014 333.3333 1000 0.5012 3.5814

Framework versions

  • Transformers 4.41.0.dev0
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1