bert-ner-msra

This model is a fine-tuned version of google-bert/bert-base-chinese on an unknown dataset. It achieves the following results on the evaluation set:

  • eval_loss: 0.0413
  • eval_precision: 0.9481
  • eval_recall: 0.9507
  • eval_f1: 0.9494
  • eval_accuracy: 0.9939
  • eval_runtime: 10.3612
  • eval_samples_per_second: 421.283
  • eval_steps_per_second: 13.222
  • epoch: 9.0
  • step: 13041

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Framework versions

  • Transformers 4.46.1
  • Pytorch 2.4.1+cu124
  • Datasets 3.1.0
  • Tokenizers 0.20.1
Downloads last month
112
Safetensors
Model size
102M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for PassbyGrocer/bert-ner-msra

Finetuned
(157)
this model