Edit model card

bert-ner-weibo

This model is a fine-tuned version of google-bert/bert-base-chinese on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2292
  • Precision: 0.6382
  • Recall: 0.7121
  • F1: 0.6731
  • Accuracy: 0.9680

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 100
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.262 1.0 43 0.1853 0.2802 0.2442 0.2610 0.9527
0.1455 2.0 86 0.1038 0.6031 0.7069 0.6509 0.9705
0.0958 3.0 129 0.0981 0.6633 0.6787 0.6709 0.9722
0.0756 4.0 172 0.1011 0.6189 0.7558 0.6806 0.9699
0.0389 5.0 215 0.1058 0.6627 0.7172 0.6889 0.9715
0.0339 6.0 258 0.1236 0.6205 0.7147 0.6643 0.9665
0.0259 7.0 301 0.1170 0.6376 0.7326 0.6818 0.9698
0.0182 8.0 344 0.1389 0.6110 0.7429 0.6705 0.9668
0.0184 9.0 387 0.1368 0.6063 0.7404 0.6667 0.9651
0.0128 10.0 430 0.1403 0.6283 0.7301 0.6754 0.9683
0.0122 11.0 473 0.1407 0.6275 0.7404 0.6792 0.9677
0.0147 12.0 516 0.1505 0.5967 0.7455 0.6629 0.9663
0.01 13.0 559 0.1406 0.6167 0.7404 0.6729 0.9675
0.0079 14.0 602 0.1527 0.6473 0.7172 0.6805 0.9692
0.0112 15.0 645 0.1549 0.6545 0.7352 0.6925 0.9681
0.0061 16.0 688 0.1585 0.6432 0.7275 0.6828 0.9691
0.0086 17.0 731 0.1598 0.6507 0.7326 0.6892 0.9683
0.0077 18.0 774 0.1677 0.6611 0.7172 0.6880 0.9685
0.0053 19.0 817 0.1674 0.6351 0.7249 0.6771 0.9687
0.0049 20.0 860 0.1777 0.6675 0.7121 0.6891 0.9687
0.0088 21.0 903 0.1579 0.6578 0.7018 0.6791 0.9676
0.0085 22.0 946 0.1729 0.6618 0.6941 0.6775 0.9675
0.0062 23.0 989 0.1788 0.6395 0.7249 0.6795 0.9685
0.0052 24.0 1032 0.1782 0.6458 0.7172 0.6797 0.9683
0.0084 25.0 1075 0.1803 0.6345 0.7275 0.6778 0.9670
0.006 26.0 1118 0.1972 0.6154 0.7198 0.6635 0.9651
0.0045 27.0 1161 0.1852 0.625 0.7198 0.6691 0.9674
0.0035 28.0 1204 0.1847 0.6412 0.7121 0.6748 0.9680
0.0045 29.0 1247 0.1823 0.6675 0.6915 0.6793 0.9687
0.0094 30.0 1290 0.1962 0.6362 0.7147 0.6731 0.9682
0.0036 31.0 1333 0.2092 0.6319 0.7018 0.6650 0.9667
0.0045 32.0 1376 0.1872 0.6242 0.7301 0.6730 0.9650
0.0051 33.0 1419 0.2008 0.6112 0.7275 0.6643 0.9649
0.0057 34.0 1462 0.2018 0.6088 0.7481 0.6713 0.9662
0.003 35.0 1505 0.1941 0.6539 0.7044 0.6782 0.9680
0.0074 36.0 1548 0.1978 0.6741 0.7018 0.6877 0.9683
0.0045 37.0 1591 0.1940 0.6563 0.7069 0.6807 0.9674
0.0031 38.0 1634 0.2075 0.6220 0.7275 0.6706 0.9674
0.0058 39.0 1677 0.1979 0.6429 0.7172 0.6780 0.9678
0.0029 40.0 1720 0.2002 0.6447 0.7044 0.6732 0.9689
0.0041 41.0 1763 0.1962 0.6222 0.7069 0.6619 0.9678
0.0028 42.0 1806 0.2035 0.6298 0.7172 0.6707 0.9672
0.0033 43.0 1849 0.2208 0.6144 0.7249 0.6651 0.9668
0.0024 44.0 1892 0.2208 0.6330 0.7095 0.6691 0.9668
0.0043 45.0 1935 0.2250 0.5872 0.7095 0.6426 0.9647
0.0043 46.0 1978 0.2151 0.6425 0.6838 0.6625 0.9676
0.0054 47.0 2021 0.2121 0.6692 0.6761 0.6726 0.9690
0.0048 48.0 2064 0.1978 0.6231 0.7224 0.6690 0.9671
0.0049 49.0 2107 0.1963 0.6453 0.7249 0.6828 0.9689
0.0043 50.0 2150 0.2090 0.6683 0.7095 0.6883 0.9691
0.0032 51.0 2193 0.2017 0.6317 0.7275 0.6762 0.9679
0.0046 52.0 2236 0.2036 0.6409 0.7249 0.6803 0.9694
0.0052 53.0 2279 0.2047 0.6210 0.7455 0.6776 0.9676
0.0027 54.0 2322 0.1953 0.6359 0.7095 0.6707 0.9688
0.0048 55.0 2365 0.1935 0.6555 0.7044 0.6791 0.9701
0.0037 56.0 2408 0.1975 0.6212 0.7378 0.6745 0.9688
0.0064 57.0 2451 0.2016 0.6337 0.7249 0.6763 0.9690
0.0039 58.0 2494 0.2087 0.6152 0.7275 0.6667 0.9669
0.0027 59.0 2537 0.2056 0.6388 0.7275 0.6803 0.9679
0.0028 60.0 2580 0.2067 0.6421 0.7378 0.6866 0.9687
0.0031 61.0 2623 0.1963 0.6300 0.7352 0.6785 0.9685
0.0042 62.0 2666 0.2048 0.6207 0.7404 0.6753 0.9670
0.0034 63.0 2709 0.2000 0.6332 0.7455 0.6848 0.9689
0.004 64.0 2752 0.1914 0.6484 0.7301 0.6868 0.9692
0.0038 65.0 2795 0.1983 0.6185 0.7378 0.6729 0.9685
0.0039 66.0 2838 0.2068 0.6214 0.7301 0.6714 0.9683
0.003 67.0 2881 0.2129 0.6236 0.7198 0.6683 0.9685
0.0036 68.0 2924 0.2118 0.6131 0.7455 0.6729 0.9676
0.0033 69.0 2967 0.1997 0.6513 0.7249 0.6861 0.9691
0.003 70.0 3010 0.2066 0.6217 0.7224 0.6683 0.9686
0.0042 71.0 3053 0.2064 0.6201 0.7301 0.6706 0.9682
0.0029 72.0 3096 0.2113 0.6196 0.7326 0.6714 0.9676
0.0021 73.0 3139 0.2051 0.6341 0.7172 0.6731 0.9685
0.0035 74.0 3182 0.2059 0.6353 0.7121 0.6715 0.9681
0.0042 75.0 3225 0.2085 0.6304 0.7147 0.6699 0.9678
0.0038 76.0 3268 0.2137 0.6284 0.7172 0.6699 0.9676
0.0023 77.0 3311 0.2134 0.6231 0.7224 0.6690 0.9682
0.003 78.0 3354 0.2149 0.6467 0.7198 0.6813 0.9689
0.0034 79.0 3397 0.2121 0.6406 0.7147 0.6756 0.9685
0.0034 80.0 3440 0.2146 0.6407 0.7198 0.6780 0.9685
0.0033 81.0 3483 0.2162 0.6430 0.7224 0.6804 0.9685
0.0031 82.0 3526 0.2233 0.6264 0.7198 0.6699 0.9678
0.0043 83.0 3569 0.2279 0.6355 0.7172 0.6739 0.9678
0.0032 84.0 3612 0.2247 0.6357 0.7224 0.6763 0.9682
0.0046 85.0 3655 0.2240 0.6495 0.7147 0.6805 0.9683
0.0047 86.0 3698 0.2262 0.6284 0.7172 0.6699 0.9684
0.0036 87.0 3741 0.2214 0.6435 0.7147 0.6772 0.9682
0.0034 88.0 3784 0.2199 0.6353 0.7121 0.6715 0.9685
0.0034 89.0 3827 0.2231 0.6414 0.7172 0.6772 0.9682
0.0024 90.0 3870 0.2239 0.6427 0.7121 0.6756 0.9683
0.0019 91.0 3913 0.2243 0.6397 0.7121 0.6740 0.9681
0.0032 92.0 3956 0.2264 0.6333 0.7147 0.6715 0.9680
0.0021 93.0 3999 0.2276 0.6304 0.7147 0.6699 0.9680
0.0029 94.0 4042 0.2277 0.6339 0.7121 0.6707 0.9680
0.0039 95.0 4085 0.2281 0.6353 0.7121 0.6715 0.9680
0.0021 96.0 4128 0.2289 0.6368 0.7121 0.6723 0.9681
0.0027 97.0 4171 0.2292 0.6382 0.7121 0.6731 0.9680
0.0028 98.0 4214 0.2289 0.6382 0.7121 0.6731 0.9682
0.0027 99.0 4257 0.2291 0.6382 0.7121 0.6731 0.9682
0.002 100.0 4300 0.2292 0.6382 0.7121 0.6731 0.9680

Framework versions

  • Transformers 4.46.1
  • Pytorch 1.13.1+cu116
  • Datasets 3.1.0
  • Tokenizers 0.20.1
Downloads last month
2
Safetensors
Model size
102M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for PassbyGrocer/bert-ner-weibo

Finetuned
(149)
this model