bert_bilstm_crf-ner-weibo
This model is a fine-tuned version of google-bert/bert-base-chinese on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.1945
- Precision: 0.6524
- Recall: 0.7429
- F1: 0.6947
- Accuracy: 0.9703
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 100
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.4272 | 1.0 | 22 | 0.3531 | 0.0 | 0.0 | 0.0 | 0.9330 |
0.2529 | 2.0 | 44 | 0.1587 | 0.4922 | 0.4884 | 0.4903 | 0.9613 |
0.1472 | 3.0 | 66 | 0.1171 | 0.5524 | 0.6915 | 0.6142 | 0.9681 |
0.0977 | 4.0 | 88 | 0.1057 | 0.5866 | 0.6967 | 0.6369 | 0.9714 |
0.065 | 5.0 | 110 | 0.1035 | 0.6336 | 0.7069 | 0.6683 | 0.9715 |
0.0538 | 6.0 | 132 | 0.1149 | 0.6307 | 0.7069 | 0.6667 | 0.9699 |
0.0413 | 7.0 | 154 | 0.1057 | 0.6315 | 0.7224 | 0.6739 | 0.9724 |
0.0344 | 8.0 | 176 | 0.1236 | 0.5979 | 0.7455 | 0.6636 | 0.9693 |
0.0296 | 9.0 | 198 | 0.1271 | 0.5958 | 0.7352 | 0.6582 | 0.9680 |
0.0297 | 10.0 | 220 | 0.1257 | 0.6442 | 0.6889 | 0.6658 | 0.9702 |
0.0212 | 11.0 | 242 | 0.1440 | 0.6037 | 0.7481 | 0.6682 | 0.9664 |
0.0208 | 12.0 | 264 | 0.1368 | 0.6284 | 0.7044 | 0.6642 | 0.9683 |
0.0165 | 13.0 | 286 | 0.1337 | 0.6545 | 0.7404 | 0.6948 | 0.9698 |
0.0164 | 14.0 | 308 | 0.1388 | 0.6514 | 0.7301 | 0.6885 | 0.9700 |
0.014 | 15.0 | 330 | 0.1403 | 0.6690 | 0.7275 | 0.6970 | 0.9701 |
0.0109 | 16.0 | 352 | 0.1467 | 0.6448 | 0.7326 | 0.6859 | 0.9694 |
0.0108 | 17.0 | 374 | 0.1488 | 0.6081 | 0.7301 | 0.6636 | 0.9670 |
0.0106 | 18.0 | 396 | 0.1564 | 0.6572 | 0.7147 | 0.6847 | 0.9687 |
0.0105 | 19.0 | 418 | 0.1620 | 0.6667 | 0.7147 | 0.6898 | 0.9691 |
0.01 | 20.0 | 440 | 0.1638 | 0.7046 | 0.6684 | 0.6860 | 0.9705 |
0.0106 | 21.0 | 462 | 0.1542 | 0.6709 | 0.6761 | 0.6735 | 0.9692 |
0.0092 | 22.0 | 484 | 0.1487 | 0.6683 | 0.7198 | 0.6931 | 0.9694 |
0.011 | 23.0 | 506 | 0.1502 | 0.6396 | 0.7301 | 0.6819 | 0.9691 |
0.0068 | 24.0 | 528 | 0.1534 | 0.6801 | 0.7378 | 0.7078 | 0.9705 |
0.0077 | 25.0 | 550 | 0.1600 | 0.6793 | 0.7352 | 0.7062 | 0.9710 |
0.0071 | 26.0 | 572 | 0.1644 | 0.6386 | 0.7404 | 0.6857 | 0.9676 |
0.0062 | 27.0 | 594 | 0.1714 | 0.6430 | 0.7224 | 0.6804 | 0.9688 |
0.006 | 28.0 | 616 | 0.1649 | 0.6461 | 0.7275 | 0.6844 | 0.9694 |
0.0072 | 29.0 | 638 | 0.1631 | 0.6643 | 0.7326 | 0.6968 | 0.9695 |
0.0122 | 30.0 | 660 | 0.1802 | 0.6054 | 0.7455 | 0.6682 | 0.9676 |
0.0062 | 31.0 | 682 | 0.1829 | 0.6154 | 0.7404 | 0.6721 | 0.9676 |
0.0075 | 32.0 | 704 | 0.1674 | 0.6313 | 0.7352 | 0.6793 | 0.9691 |
0.0048 | 33.0 | 726 | 0.1664 | 0.6422 | 0.7429 | 0.6889 | 0.9692 |
0.0045 | 34.0 | 748 | 0.1724 | 0.6374 | 0.7455 | 0.6872 | 0.9697 |
0.0055 | 35.0 | 770 | 0.1714 | 0.6636 | 0.7301 | 0.6952 | 0.9700 |
0.0071 | 36.0 | 792 | 0.1673 | 0.6316 | 0.7404 | 0.6817 | 0.9692 |
0.0039 | 37.0 | 814 | 0.1635 | 0.6620 | 0.7352 | 0.6967 | 0.9709 |
0.0036 | 38.0 | 836 | 0.1727 | 0.6584 | 0.7532 | 0.7026 | 0.9710 |
0.0051 | 39.0 | 858 | 0.1735 | 0.6509 | 0.7429 | 0.6939 | 0.9708 |
0.0033 | 40.0 | 880 | 0.1758 | 0.6949 | 0.7378 | 0.7157 | 0.9718 |
0.0045 | 41.0 | 902 | 0.1812 | 0.6309 | 0.7558 | 0.6877 | 0.9698 |
0.0035 | 42.0 | 924 | 0.1791 | 0.6729 | 0.7404 | 0.7050 | 0.9709 |
0.0043 | 43.0 | 946 | 0.1923 | 0.6532 | 0.7455 | 0.6963 | 0.9697 |
0.0045 | 44.0 | 968 | 0.1815 | 0.6492 | 0.7326 | 0.6884 | 0.9696 |
0.0037 | 45.0 | 990 | 0.1830 | 0.6493 | 0.7378 | 0.6907 | 0.9700 |
0.0045 | 46.0 | 1012 | 0.1809 | 0.6493 | 0.7378 | 0.6907 | 0.9700 |
0.0039 | 47.0 | 1034 | 0.1811 | 0.6545 | 0.7404 | 0.6948 | 0.9701 |
0.0046 | 48.0 | 1056 | 0.1740 | 0.6659 | 0.7172 | 0.6906 | 0.9708 |
0.0039 | 49.0 | 1078 | 0.1827 | 0.6318 | 0.7455 | 0.6840 | 0.9694 |
0.0036 | 50.0 | 1100 | 0.1762 | 0.6443 | 0.7404 | 0.6890 | 0.9698 |
0.0046 | 51.0 | 1122 | 0.1752 | 0.6538 | 0.7378 | 0.6932 | 0.9702 |
0.0036 | 52.0 | 1144 | 0.1856 | 0.6344 | 0.7404 | 0.6833 | 0.9692 |
0.0036 | 53.0 | 1166 | 0.1870 | 0.6350 | 0.7378 | 0.6825 | 0.9693 |
0.0049 | 54.0 | 1188 | 0.1840 | 0.6723 | 0.7121 | 0.6916 | 0.9699 |
0.0042 | 55.0 | 1210 | 0.1927 | 0.6220 | 0.7404 | 0.6761 | 0.9687 |
0.0039 | 56.0 | 1232 | 0.1854 | 0.6545 | 0.7352 | 0.6925 | 0.9704 |
0.0042 | 57.0 | 1254 | 0.1900 | 0.6523 | 0.7378 | 0.6924 | 0.9700 |
0.0028 | 58.0 | 1276 | 0.1894 | 0.6486 | 0.7404 | 0.6915 | 0.9697 |
0.0049 | 59.0 | 1298 | 0.1904 | 0.6366 | 0.7429 | 0.6856 | 0.9695 |
0.0031 | 60.0 | 1320 | 0.1844 | 0.6492 | 0.7326 | 0.6884 | 0.9698 |
0.0045 | 61.0 | 1342 | 0.1866 | 0.6429 | 0.7404 | 0.6882 | 0.9696 |
0.004 | 62.0 | 1364 | 0.1888 | 0.625 | 0.7326 | 0.6746 | 0.9686 |
0.0031 | 63.0 | 1386 | 0.1922 | 0.6875 | 0.7352 | 0.7106 | 0.9710 |
0.0044 | 64.0 | 1408 | 0.1918 | 0.6722 | 0.7326 | 0.7011 | 0.9706 |
0.0046 | 65.0 | 1430 | 0.1987 | 0.6475 | 0.7506 | 0.6952 | 0.9685 |
0.0044 | 66.0 | 1452 | 0.1868 | 0.6388 | 0.7455 | 0.6880 | 0.9698 |
0.0042 | 67.0 | 1474 | 0.1920 | 0.6356 | 0.7532 | 0.6894 | 0.9695 |
0.0038 | 68.0 | 1496 | 0.1852 | 0.6606 | 0.7506 | 0.7028 | 0.9705 |
0.0033 | 69.0 | 1518 | 0.1843 | 0.6476 | 0.7558 | 0.6975 | 0.9700 |
0.0034 | 70.0 | 1540 | 0.1797 | 0.6532 | 0.7506 | 0.6986 | 0.9707 |
0.0042 | 71.0 | 1562 | 0.1820 | 0.6332 | 0.7455 | 0.6848 | 0.9699 |
0.0033 | 72.0 | 1584 | 0.1874 | 0.6482 | 0.7532 | 0.6968 | 0.9704 |
0.0039 | 73.0 | 1606 | 0.1878 | 0.6636 | 0.7506 | 0.7045 | 0.9708 |
0.003 | 74.0 | 1628 | 0.1857 | 0.6553 | 0.7429 | 0.6964 | 0.9712 |
0.0038 | 75.0 | 1650 | 0.1889 | 0.6606 | 0.7404 | 0.6982 | 0.9709 |
0.004 | 76.0 | 1672 | 0.1880 | 0.6539 | 0.7481 | 0.6978 | 0.9709 |
0.0032 | 77.0 | 1694 | 0.1875 | 0.6590 | 0.7404 | 0.6973 | 0.9706 |
0.0034 | 78.0 | 1716 | 0.1868 | 0.6532 | 0.7455 | 0.6963 | 0.9710 |
0.0029 | 79.0 | 1738 | 0.1899 | 0.6545 | 0.7404 | 0.6948 | 0.9705 |
0.0032 | 80.0 | 1760 | 0.1899 | 0.6628 | 0.7429 | 0.7006 | 0.9709 |
0.0037 | 81.0 | 1782 | 0.1928 | 0.6545 | 0.7404 | 0.6948 | 0.9705 |
0.0039 | 82.0 | 1804 | 0.1916 | 0.6560 | 0.7404 | 0.6957 | 0.9705 |
0.0034 | 83.0 | 1826 | 0.1926 | 0.6560 | 0.7352 | 0.6933 | 0.9705 |
0.0032 | 84.0 | 1848 | 0.1931 | 0.6621 | 0.7455 | 0.7013 | 0.9709 |
0.0048 | 85.0 | 1870 | 0.1925 | 0.6659 | 0.7481 | 0.7046 | 0.9712 |
0.0039 | 86.0 | 1892 | 0.1903 | 0.6690 | 0.7326 | 0.6994 | 0.9709 |
0.0039 | 87.0 | 1914 | 0.1948 | 0.6538 | 0.7429 | 0.6955 | 0.9709 |
0.0032 | 88.0 | 1936 | 0.1949 | 0.6682 | 0.7558 | 0.7093 | 0.9710 |
0.003 | 89.0 | 1958 | 0.1948 | 0.6697 | 0.7609 | 0.7124 | 0.9710 |
0.0027 | 90.0 | 1980 | 0.1927 | 0.6489 | 0.7506 | 0.6961 | 0.9705 |
0.0029 | 91.0 | 2002 | 0.1931 | 0.6496 | 0.7481 | 0.6953 | 0.9706 |
0.003 | 92.0 | 2024 | 0.1932 | 0.6532 | 0.7455 | 0.6963 | 0.9712 |
0.0029 | 93.0 | 2046 | 0.1928 | 0.6539 | 0.7481 | 0.6978 | 0.9712 |
0.0036 | 94.0 | 2068 | 0.1935 | 0.6503 | 0.7506 | 0.6969 | 0.9710 |
0.0034 | 95.0 | 2090 | 0.1941 | 0.6607 | 0.7558 | 0.7050 | 0.9714 |
0.0035 | 96.0 | 2112 | 0.1940 | 0.6621 | 0.7455 | 0.7013 | 0.9711 |
0.0028 | 97.0 | 2134 | 0.1940 | 0.6553 | 0.7429 | 0.6964 | 0.9707 |
0.0032 | 98.0 | 2156 | 0.1944 | 0.6509 | 0.7429 | 0.6939 | 0.9704 |
0.0028 | 99.0 | 2178 | 0.1943 | 0.6509 | 0.7429 | 0.6939 | 0.9705 |
0.0021 | 100.0 | 2200 | 0.1945 | 0.6524 | 0.7429 | 0.6947 | 0.9703 |
Framework versions
- Transformers 4.46.1
- Pytorch 1.13.1+cu117
- Datasets 3.1.0
- Tokenizers 0.20.2
- Downloads last month
- 8
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for PassbyGrocer/bert_bilstm_crf-ner-weibo
Base model
google-bert/bert-base-chinese