Edit model card

bert_bilstm_crf-ner-weibo

This model is a fine-tuned version of google-bert/bert-base-chinese on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1945
  • Precision: 0.6524
  • Recall: 0.7429
  • F1: 0.6947
  • Accuracy: 0.9703

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 100
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.4272 1.0 22 0.3531 0.0 0.0 0.0 0.9330
0.2529 2.0 44 0.1587 0.4922 0.4884 0.4903 0.9613
0.1472 3.0 66 0.1171 0.5524 0.6915 0.6142 0.9681
0.0977 4.0 88 0.1057 0.5866 0.6967 0.6369 0.9714
0.065 5.0 110 0.1035 0.6336 0.7069 0.6683 0.9715
0.0538 6.0 132 0.1149 0.6307 0.7069 0.6667 0.9699
0.0413 7.0 154 0.1057 0.6315 0.7224 0.6739 0.9724
0.0344 8.0 176 0.1236 0.5979 0.7455 0.6636 0.9693
0.0296 9.0 198 0.1271 0.5958 0.7352 0.6582 0.9680
0.0297 10.0 220 0.1257 0.6442 0.6889 0.6658 0.9702
0.0212 11.0 242 0.1440 0.6037 0.7481 0.6682 0.9664
0.0208 12.0 264 0.1368 0.6284 0.7044 0.6642 0.9683
0.0165 13.0 286 0.1337 0.6545 0.7404 0.6948 0.9698
0.0164 14.0 308 0.1388 0.6514 0.7301 0.6885 0.9700
0.014 15.0 330 0.1403 0.6690 0.7275 0.6970 0.9701
0.0109 16.0 352 0.1467 0.6448 0.7326 0.6859 0.9694
0.0108 17.0 374 0.1488 0.6081 0.7301 0.6636 0.9670
0.0106 18.0 396 0.1564 0.6572 0.7147 0.6847 0.9687
0.0105 19.0 418 0.1620 0.6667 0.7147 0.6898 0.9691
0.01 20.0 440 0.1638 0.7046 0.6684 0.6860 0.9705
0.0106 21.0 462 0.1542 0.6709 0.6761 0.6735 0.9692
0.0092 22.0 484 0.1487 0.6683 0.7198 0.6931 0.9694
0.011 23.0 506 0.1502 0.6396 0.7301 0.6819 0.9691
0.0068 24.0 528 0.1534 0.6801 0.7378 0.7078 0.9705
0.0077 25.0 550 0.1600 0.6793 0.7352 0.7062 0.9710
0.0071 26.0 572 0.1644 0.6386 0.7404 0.6857 0.9676
0.0062 27.0 594 0.1714 0.6430 0.7224 0.6804 0.9688
0.006 28.0 616 0.1649 0.6461 0.7275 0.6844 0.9694
0.0072 29.0 638 0.1631 0.6643 0.7326 0.6968 0.9695
0.0122 30.0 660 0.1802 0.6054 0.7455 0.6682 0.9676
0.0062 31.0 682 0.1829 0.6154 0.7404 0.6721 0.9676
0.0075 32.0 704 0.1674 0.6313 0.7352 0.6793 0.9691
0.0048 33.0 726 0.1664 0.6422 0.7429 0.6889 0.9692
0.0045 34.0 748 0.1724 0.6374 0.7455 0.6872 0.9697
0.0055 35.0 770 0.1714 0.6636 0.7301 0.6952 0.9700
0.0071 36.0 792 0.1673 0.6316 0.7404 0.6817 0.9692
0.0039 37.0 814 0.1635 0.6620 0.7352 0.6967 0.9709
0.0036 38.0 836 0.1727 0.6584 0.7532 0.7026 0.9710
0.0051 39.0 858 0.1735 0.6509 0.7429 0.6939 0.9708
0.0033 40.0 880 0.1758 0.6949 0.7378 0.7157 0.9718
0.0045 41.0 902 0.1812 0.6309 0.7558 0.6877 0.9698
0.0035 42.0 924 0.1791 0.6729 0.7404 0.7050 0.9709
0.0043 43.0 946 0.1923 0.6532 0.7455 0.6963 0.9697
0.0045 44.0 968 0.1815 0.6492 0.7326 0.6884 0.9696
0.0037 45.0 990 0.1830 0.6493 0.7378 0.6907 0.9700
0.0045 46.0 1012 0.1809 0.6493 0.7378 0.6907 0.9700
0.0039 47.0 1034 0.1811 0.6545 0.7404 0.6948 0.9701
0.0046 48.0 1056 0.1740 0.6659 0.7172 0.6906 0.9708
0.0039 49.0 1078 0.1827 0.6318 0.7455 0.6840 0.9694
0.0036 50.0 1100 0.1762 0.6443 0.7404 0.6890 0.9698
0.0046 51.0 1122 0.1752 0.6538 0.7378 0.6932 0.9702
0.0036 52.0 1144 0.1856 0.6344 0.7404 0.6833 0.9692
0.0036 53.0 1166 0.1870 0.6350 0.7378 0.6825 0.9693
0.0049 54.0 1188 0.1840 0.6723 0.7121 0.6916 0.9699
0.0042 55.0 1210 0.1927 0.6220 0.7404 0.6761 0.9687
0.0039 56.0 1232 0.1854 0.6545 0.7352 0.6925 0.9704
0.0042 57.0 1254 0.1900 0.6523 0.7378 0.6924 0.9700
0.0028 58.0 1276 0.1894 0.6486 0.7404 0.6915 0.9697
0.0049 59.0 1298 0.1904 0.6366 0.7429 0.6856 0.9695
0.0031 60.0 1320 0.1844 0.6492 0.7326 0.6884 0.9698
0.0045 61.0 1342 0.1866 0.6429 0.7404 0.6882 0.9696
0.004 62.0 1364 0.1888 0.625 0.7326 0.6746 0.9686
0.0031 63.0 1386 0.1922 0.6875 0.7352 0.7106 0.9710
0.0044 64.0 1408 0.1918 0.6722 0.7326 0.7011 0.9706
0.0046 65.0 1430 0.1987 0.6475 0.7506 0.6952 0.9685
0.0044 66.0 1452 0.1868 0.6388 0.7455 0.6880 0.9698
0.0042 67.0 1474 0.1920 0.6356 0.7532 0.6894 0.9695
0.0038 68.0 1496 0.1852 0.6606 0.7506 0.7028 0.9705
0.0033 69.0 1518 0.1843 0.6476 0.7558 0.6975 0.9700
0.0034 70.0 1540 0.1797 0.6532 0.7506 0.6986 0.9707
0.0042 71.0 1562 0.1820 0.6332 0.7455 0.6848 0.9699
0.0033 72.0 1584 0.1874 0.6482 0.7532 0.6968 0.9704
0.0039 73.0 1606 0.1878 0.6636 0.7506 0.7045 0.9708
0.003 74.0 1628 0.1857 0.6553 0.7429 0.6964 0.9712
0.0038 75.0 1650 0.1889 0.6606 0.7404 0.6982 0.9709
0.004 76.0 1672 0.1880 0.6539 0.7481 0.6978 0.9709
0.0032 77.0 1694 0.1875 0.6590 0.7404 0.6973 0.9706
0.0034 78.0 1716 0.1868 0.6532 0.7455 0.6963 0.9710
0.0029 79.0 1738 0.1899 0.6545 0.7404 0.6948 0.9705
0.0032 80.0 1760 0.1899 0.6628 0.7429 0.7006 0.9709
0.0037 81.0 1782 0.1928 0.6545 0.7404 0.6948 0.9705
0.0039 82.0 1804 0.1916 0.6560 0.7404 0.6957 0.9705
0.0034 83.0 1826 0.1926 0.6560 0.7352 0.6933 0.9705
0.0032 84.0 1848 0.1931 0.6621 0.7455 0.7013 0.9709
0.0048 85.0 1870 0.1925 0.6659 0.7481 0.7046 0.9712
0.0039 86.0 1892 0.1903 0.6690 0.7326 0.6994 0.9709
0.0039 87.0 1914 0.1948 0.6538 0.7429 0.6955 0.9709
0.0032 88.0 1936 0.1949 0.6682 0.7558 0.7093 0.9710
0.003 89.0 1958 0.1948 0.6697 0.7609 0.7124 0.9710
0.0027 90.0 1980 0.1927 0.6489 0.7506 0.6961 0.9705
0.0029 91.0 2002 0.1931 0.6496 0.7481 0.6953 0.9706
0.003 92.0 2024 0.1932 0.6532 0.7455 0.6963 0.9712
0.0029 93.0 2046 0.1928 0.6539 0.7481 0.6978 0.9712
0.0036 94.0 2068 0.1935 0.6503 0.7506 0.6969 0.9710
0.0034 95.0 2090 0.1941 0.6607 0.7558 0.7050 0.9714
0.0035 96.0 2112 0.1940 0.6621 0.7455 0.7013 0.9711
0.0028 97.0 2134 0.1940 0.6553 0.7429 0.6964 0.9707
0.0032 98.0 2156 0.1944 0.6509 0.7429 0.6939 0.9704
0.0028 99.0 2178 0.1943 0.6509 0.7429 0.6939 0.9705
0.0021 100.0 2200 0.1945 0.6524 0.7429 0.6947 0.9703

Framework versions

  • Transformers 4.46.1
  • Pytorch 1.13.1+cu117
  • Datasets 3.1.0
  • Tokenizers 0.20.2
Downloads last month
8
Safetensors
Model size
102M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for PassbyGrocer/bert_bilstm_crf-ner-weibo

Finetuned
(149)
this model