PawanKrGunjan's picture
End of training
836d512
|
raw
history blame
3.5 kB
metadata
license: apache-2.0
base_model: openai/whisper-base
tags:
  - generated_from_trainer
datasets:
  - marsyas/gtzan
metrics:
  - accuracy
model-index:
  - name: whisper-base-finetuned-gtzan
    results:
      - task:
          name: Audio Classification
          type: audio-classification
        dataset:
          name: GTZAN
          type: marsyas/gtzan
          config: all
          split: train
          args: all
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.62

whisper-base-finetuned-gtzan

This model is a fine-tuned version of openai/whisper-base on the GTZAN dataset. It achieves the following results on the evaluation set:

  • Loss: 3.8944
  • Accuracy: 0.62

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.3577 1.0 200 1.9551 0.35
2.0492 2.0 400 2.0333 0.27
2.0331 3.0 600 1.9196 0.3
1.3732 4.0 800 1.6705 0.34
1.7021 5.0 1000 1.7006 0.335
1.907 6.0 1200 1.7489 0.36
1.611 7.0 1400 1.5347 0.45
1.1989 8.0 1600 1.4835 0.465
2.0049 9.0 1800 1.3681 0.525
0.9562 10.0 2000 1.4732 0.49
0.4145 11.0 2200 1.2645 0.555
1.5859 12.0 2400 1.3992 0.51
1.5115 13.0 2600 1.2638 0.545
0.9777 14.0 2800 1.4003 0.57
0.831 15.0 3000 1.3377 0.575
1.3201 16.0 3200 1.5033 0.575
1.1711 17.0 3400 1.5239 0.555
0.4201 18.0 3600 1.6902 0.555
0.346 19.0 3800 1.9733 0.525
0.5619 20.0 4000 2.1321 0.555
0.645 21.0 4200 2.1219 0.625
0.2672 22.0 4400 2.2037 0.555
0.2826 23.0 4600 2.7297 0.565
0.4265 24.0 4800 3.3848 0.5
0.0319 25.0 5000 3.5627 0.59
0.0024 26.0 5200 3.7420 0.6
0.0332 27.0 5400 3.7159 0.63
0.0009 28.0 5600 3.8011 0.635
0.0001 29.0 5800 3.8852 0.615
0.0001 30.0 6000 3.8944 0.62

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.4
  • Tokenizers 0.13.3