metadata
license: apache-2.0
base_model: microsoft/swin-base-patch4-window7-224-in22k
tags:
- generated_from_trainer
datasets:
- food101
metrics:
- accuracy
model-index:
- name: swin-base-patch4-window7-224-in22k-food101-16-7
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: food101
type: food101
config: default
split: validation
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9292277227722773
swin-base-patch4-window7-224-in22k-food101-16-7
This model is a fine-tuned version of microsoft/swin-base-patch4-window7-224-in22k on the food101 dataset. It achieves the following results on the evaluation set:
- Loss: 0.2515
- Accuracy: 0.9292
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 7
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.8296 | 1.0 | 1183 | 0.4354 | 0.8731 |
0.6811 | 2.0 | 2367 | 0.3406 | 0.8999 |
0.4531 | 3.0 | 3551 | 0.2902 | 0.9154 |
0.5265 | 4.0 | 4735 | 0.2751 | 0.9199 |
0.4338 | 5.0 | 5918 | 0.2689 | 0.9227 |
0.3443 | 6.0 | 7102 | 0.2538 | 0.9276 |
0.3871 | 7.0 | 8281 | 0.2515 | 0.9292 |
Framework versions
- Transformers 4.34.1
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1