|
import os |
|
import json |
|
|
|
import numpy as np |
|
import pandas as pd |
|
import matplotlib as mpl |
|
import seaborn as sns |
|
|
|
|
|
def main(): |
|
datasets = ["mnist","fmnist", "cifar10"] |
|
selected_epochs_dict = {"mnist":[[1], [10], [15]],"fmnist":[[1],[25],[50]], "cifar10":[[1], [100],[199]]} |
|
col = np.array(["dataset", "method", "type", "hue", "period", "eval"]) |
|
df = pd.DataFrame({}, columns=col) |
|
|
|
for i in range(len(datasets)): |
|
dataset = datasets[i] |
|
data = np.array([]) |
|
selected_epochs = selected_epochs_dict[dataset] |
|
|
|
content_path = "/home/xianglin/projects/DVI_data/resnet18_{}".format(dataset) |
|
for epoch_id in range(3): |
|
stage_epochs = selected_epochs[epoch_id] |
|
inv_acc_train_list = list() |
|
inv_acc_test_list = list() |
|
for epoch in stage_epochs: |
|
|
|
eval_path = os.path.join(content_path, "Model", "Epoch_{}".format(epoch), "evaluation_id_parametricUmap_step2.json") |
|
with open(eval_path, "r") as f: |
|
eval = json.load(f) |
|
inv_acc_train = round(eval["inv_dist_train"], 3) |
|
inv_acc_test = round(eval["inv_dist_test"], 3) |
|
inv_acc_train_list.append(inv_acc_train) |
|
inv_acc_test_list.append(inv_acc_test) |
|
|
|
inv_acc_train = sum(inv_acc_train_list)/len(inv_acc_train_list) |
|
inv_acc_test = sum(inv_acc_test_list)/len(inv_acc_test_list) |
|
|
|
if len(data)==0: |
|
data = np.array([[dataset, "DVI", "Train", "DVI(Train)", "{}".format(str(epoch_id)), inv_acc_train]]) |
|
else: |
|
data = np.concatenate((data, np.array([[dataset, "DVI", "Train", "DVI(Train)", "{}".format(str(epoch_id)), inv_acc_train]])), axis=0) |
|
data = np.concatenate((data, np.array([[dataset, "DVI", "Test", "DVI(Test)", "{}".format(str(epoch_id)), inv_acc_test]])), axis=0) |
|
|
|
eval_path = "/home/xianglin/projects/DVI_data/resnet18_{}/Model/test_evaluation_tnn_noB.json".format(dataset) |
|
with open(eval_path, "r") as f: |
|
eval = json.load(f) |
|
for epoch_id in range(3): |
|
stage_epochs = selected_epochs[epoch_id] |
|
ppr_train_list = list() |
|
ppr_test_list = list() |
|
for epoch in stage_epochs: |
|
ppr_train = round(eval["ppr_dist_train"][str(epoch)], 3) |
|
ppr_test = round(eval["ppr_dist_test"][str(epoch)], 3) |
|
ppr_train_list.append(ppr_train) |
|
ppr_test_list.append(ppr_test) |
|
ppr_train = sum(ppr_train_list)/len(ppr_train_list) |
|
ppr_test = sum(ppr_test_list)/len(ppr_test_list) |
|
|
|
data = np.concatenate((data, np.array([[dataset, "TimeVis", "Train", "TimeVis(Train)", "{}".format(str(epoch_id)), ppr_train]])), axis=0) |
|
data = np.concatenate((data, np.array([[dataset, "TimeVis", "Test", "TimeVis(Test)", "{}".format(str(epoch_id)), ppr_test]])), axis=0) |
|
|
|
eval_path = "/home/xianglin/projects/DVI_data/resnet18_{}/Model/evaluation_dd_noB.json".format(dataset) |
|
with open(eval_path, "r") as f: |
|
eval = json.load(f) |
|
for epoch_id in range(3): |
|
stage_epochs = selected_epochs[epoch_id] |
|
ppr_train_list = list() |
|
ppr_test_list = list() |
|
for epoch in stage_epochs: |
|
ppr_train = round(eval["ppr_dist_train"][str(epoch)], 3) |
|
ppr_test = round(eval["ppr_dist_test"][str(epoch)], 3) |
|
ppr_train_list.append(ppr_train) |
|
ppr_test_list.append(ppr_test) |
|
ppr_train = sum(ppr_train_list)/len(ppr_train_list) |
|
ppr_test = sum(ppr_test_list)/len(ppr_test_list) |
|
|
|
data = np.concatenate((data, np.array([[dataset, "DD", "Train", "DD(Train)", "{}".format(str(epoch_id)), ppr_train]])), axis=0) |
|
data = np.concatenate((data, np.array([[dataset, "DD", "Test", "DD(Test)", "{}".format(str(epoch_id)), ppr_test]])), axis=0) |
|
|
|
df_tmp = pd.DataFrame(data, columns=col) |
|
df = df.append(df_tmp, ignore_index=True) |
|
df[["period"]] = df[["period"]].astype(int) |
|
|
|
df[["eval"]] = df[["eval"]].astype(float) |
|
|
|
df.to_excel("./plot_results/PPR.xlsx") |
|
|
|
pal20c = sns.color_palette('tab20', 20) |
|
sns.set_theme(style="whitegrid", palette=pal20c) |
|
hue_dict = { |
|
"DVI(Train)": pal20c[4], |
|
"TimeVis(Train)": pal20c[6], |
|
"DD(Train)": pal20c[8], |
|
|
|
"DVI(Test)": pal20c[5], |
|
"TimeVis(Test)": pal20c[7], |
|
"DD(Test)": pal20c[9], |
|
} |
|
sns.palplot([hue_dict[i] for i in hue_dict.keys()]) |
|
|
|
axes = {'labelsize': 15, |
|
'titlesize': 15,} |
|
mpl.rc('axes', **axes) |
|
mpl.rcParams['xtick.labelsize'] = 15 |
|
|
|
hue_list = ["DVI(Train)", "DVI(Test)", "TimeVis(Train)", "TimeVis(Test)", "DD(Train)", "DD(Test)"] |
|
|
|
fg = sns.catplot( |
|
x="period", |
|
y="eval", |
|
hue="hue", |
|
hue_order=hue_list, |
|
|
|
|
|
col="dataset", |
|
ci=0.001, |
|
height=2.5, |
|
aspect=1.0, |
|
data=df, |
|
kind="bar", |
|
palette=[hue_dict[i] for i in hue_list], |
|
legend=True |
|
) |
|
sns.move_legend(fg, "lower center", bbox_to_anchor=(.43, 0.92), ncol=3, title=None, frameon=False) |
|
mpl.pyplot.setp(fg._legend.get_texts(), fontsize='15') |
|
|
|
axs = fg.axes[0] |
|
max_ = df["eval"].max() |
|
|
|
axs[0].set_ylim(0., max_*1.1) |
|
|
|
|
|
|
|
|
|
(fg.despine(bottom=False, right=False, left=False, top=False) |
|
.set_xticklabels(['Early', 'Mid','Late']) |
|
.set_axis_labels("", "") |
|
) |
|
|
|
|
|
fg.savefig( |
|
"./plot_results/noB_inv_dist.png", |
|
dpi=300, |
|
bbox_inches="tight", |
|
pad_inches=0.0, |
|
transparent=True, |
|
) |
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|
|
|