SalazarPevelll
fe
8fcf809
'''This class serves as a intermediate layer for tensorboard frontend and timeVis backend'''
import os
import sys
import json
import time
import torch
import numpy as np
import pickle
import shutil
import torch.nn
from torch.utils.data import DataLoader
from torch.utils.data import WeightedRandomSampler
import torchvision
from scipy.special import softmax
# timevis_path = "D:\\code-space\\DLVisDebugger" #limy
timevis_path = "../../DLVisDebugger" #xianglin#yvonne
sys.path.append(timevis_path)
from singleVis.utils import *
from singleVis.custom_weighted_random_sampler import CustomWeightedRandomSampler
from singleVis.edge_dataset import DataHandler, HybridDataHandler
from singleVis.spatial_edge_constructor import SingleEpochSpatialEdgeConstructor
# kcHybridDenseALSpatialEdgeConstructor,GlobalTemporalEdgeConstructor
from singleVis.trajectory_manager import Recommender
from singleVis.eval.evaluator import ALEvaluator
from singleVis.segmenter import DenseALSegmenter
# active_learning_path = "D:\\code-space\\ActiveLearning" # limy
active_learning_path = "../../ActiveLearning"
sys.path.append(active_learning_path)
class TimeVisBackend:
def __init__(self, data_provider, projector, vis, evaluator, **hyperparameters) -> None:
self.data_provider = data_provider
self.projector = projector
self.vis = vis
self.evaluator = evaluator
self.hyperparameters = hyperparameters
#################################################################################################################
# #
# data Panel #
# #
#################################################################################################################
def batch_inv_preserve(self, epoch, data):
"""
get inverse confidence for a single point
:param epoch: int
:param data: numpy.ndarray
:return l: boolean, whether reconstruction data have the same prediction
:return conf_diff: float, (0, 1), confidence difference
"""
embedding = self.projector.batch_project(epoch, data)
recon = self.projector.batch_inverse(epoch, embedding)
ori_pred = self.data_provider.get_pred(epoch, data)
new_pred = self.data_provider.get_pred(epoch, recon)
ori_pred = softmax(ori_pred, axis=1)
new_pred = softmax(new_pred, axis=1)
old_label = ori_pred.argmax(-1)
new_label = new_pred.argmax(-1)
l = old_label == new_label
old_conf = [ori_pred[i, old_label[i]] for i in range(len(old_label))]
new_conf = [new_pred[i, old_label[i]] for i in range(len(old_label))]
old_conf = np.array(old_conf)
new_conf = np.array(new_conf)
conf_diff = old_conf - new_conf
return l, conf_diff
#################################################################################################################
# #
# Search Panel #
# #
#################################################################################################################
# TODO: fix bugs accroding to new api
# customized features
def filter_label(self, label, epoch_id):
try:
index = self.data_provider.classes.index(label)
except:
index = -1
train_labels = self.data_provider.train_labels(epoch_id)
test_labels = self.data_provider.test_labels(epoch_id)
labels = np.concatenate((train_labels, test_labels), 0)
idxs = np.argwhere(labels == index)
idxs = np.squeeze(idxs)
return idxs
def filter_type(self, type, epoch_id):
if type == "train":
res = self.get_epoch_index(epoch_id)
elif type == "test":
train_num = self.data_provider.train_num
test_num = self.data_provider.test_num
res = list(range(train_num, train_num+ test_num, 1))
elif type == "unlabel":
labeled = np.array(self.get_epoch_index(epoch_id))
train_num = self.data_provider.train_num
all_data = np.arange(train_num)
unlabeled = np.setdiff1d(all_data, labeled)
res = unlabeled.tolist()
else:
# all data
train_num = self.data_provider.train_num
test_num = self.data_provider.test_num
res = list(range(0, train_num + test_num, 1))
return res
def filter_conf(self, conf_min, conf_max, epoch_id):
train_data = self.data_provider.train_representation(epoch_id)
test_data =self.data_provider.test_representation(epoch_id)
data = np.concatenate((train_data, test_data), axis=0)
pred = self.data_provider.get_pred(epoch_id, data)
scores = np.amax(softmax(pred, axis=1), axis=1)
res = np.argwhere(np.logical_and(scores<=conf_max, scores>=conf_min)).squeeze().tolist()
return res
#################################################################################################################
# #
# Helper Functions #
# #
#################################################################################################################
def save_acc_and_rej(self, acc_idxs, rej_idxs, file_name):
d = {
"acc_idxs": acc_idxs,
"rej_idxs": rej_idxs
}
path = os.path.join(self.data_provider.content_path, "{}_acc_rej.json".format(file_name))
with open(path, "w") as f:
json.dump(d, f)
print("Successfully save the acc and rej idxs selected by user...")
def get_epoch_index(self, epoch_id):
"""get the training data index for an epoch"""
index_file = os.path.join(self.data_provider.model_path, "Epoch_{:d}".format(epoch_id), "index.json")
index = load_labelled_data_index(index_file)
return index
def reset(self):
return
class ActiveLearningTimeVisBackend(TimeVisBackend):
def __init__(self, data_provider, projector, trainer, vis, evaluator, dense, **hyperparameters) -> None:
super().__init__(data_provider, projector, vis, evaluator, **hyperparameters)
self.trainer = trainer
self.dense = dense
def save_acc_and_rej(self, iteration, acc_idxs, rej_idxs, file_name):
d = {
"acc_idxs": acc_idxs,
"rej_idxs": rej_idxs
}
path = os.path.join(self.data_provider.content_path, "Model", "Iteration_{}".format(iteration), "{}_acc_rej.json".format(file_name))
with open(path, "w") as f:
json.dump(d, f)
print("Successfully save the acc and rej idxs selected by user at Iteration {}...".format(iteration))
def reset(self, iteration):
# delete [iteration,...)
max_i = self.get_max_iter()
for i in range(iteration, max_i+1, 1):
path = os.path.join(self.data_provider.content_path, "Model", "Iteration_{}".format(i))
shutil.rmtree(path)
iter_structure_path = os.path.join(self.data_provider.content_path, "iteration_structure.json")
with open(iter_structure_path, "r") as f:
i_s = json.load(f)
new_is = list()
for item in i_s:
value = item["value"]
if value < iteration:
new_is.append(item)
with open(iter_structure_path, "w") as f:
json.dump(new_is, f)
print("Successfully remove cache data!")
def get_epoch_index(self, iteration):
"""get the training data index for an epoch"""
index_file = os.path.join(self.data_provider.model_path, "Iteration_{:d}".format(iteration), "index.json")
index = load_labelled_data_index(index_file)
return index
def al_query(self, iteration, budget, strategy, acc_idxs, rej_idxs):
"""get the index of new selection from different strategies"""
CONTENT_PATH = self.data_provider.content_path
NUM_QUERY = budget
GPU = self.hyperparameters["GPU"]
NET = self.hyperparameters["TRAINING"]["NET"]
DATA_NAME = self.hyperparameters["DATASET"]
sys.path.append(CONTENT_PATH)
# record output information
now = time.strftime("%Y-%m-%d-%H_%M_%S", time.localtime(time.time()))
sys.stdout = open(os.path.join(CONTENT_PATH, now+".txt"), "w")
# loading neural network
import Model.model as subject_model
task_model = eval("subject_model.{}()".format(NET))
task_model_type = "pytorch"
# start experiment
n_pool = self.hyperparameters["TRAINING"]["train_num"] # 50000
n_test = self.hyperparameters["TRAINING"]['test_num'] # 10000
resume_path = os.path.join(CONTENT_PATH, "Model", "Iteration_{}".format(iteration))
idxs_lb = np.array(json.load(open(os.path.join(resume_path, "index.json"), "r")))
state_dict = torch.load(os.path.join(resume_path, "subject_model.pth"), map_location=torch.device('cpu'))
task_model.load_state_dict(state_dict)
NUM_INIT_LB = len(idxs_lb)
print('resume from iteration {}'.format(iteration))
print('number of labeled pool: {}'.format(NUM_INIT_LB))
print('number of unlabeled pool: {}'.format(n_pool - NUM_INIT_LB))
print('number of testing pool: {}'.format(n_test))
# here the training handlers and testing handlers are different
complete_dataset = torchvision.datasets.CIFAR10(root="..//data//CIFAR10", download=True, train=True, transform=self.hyperparameters["TRAINING"]['transform_te'])
if strategy == "Random":
from query_strategies.random import RandomSampling
idxs_selected = np.concatenate((acc_idxs.astype(np.int64), rej_idxs.astype(np.int64)), axis=0)
curr_lb = np.concatenate((idxs_lb, idxs_selected), axis=0)
q_strategy = RandomSampling(task_model, task_model_type, n_pool, curr_lb, 10, DATA_NAME, NET, gpu=GPU, **self.hyperparameters["TRAINING"])
# print information
print(DATA_NAME)
print(type(q_strategy).__name__)
print('================Round {:d}==============='.format(iteration+1))
# query new samples
t0 = time.time()
new_indices, scores = q_strategy.query(NUM_QUERY)
t1 = time.time()
print("Query time is {:.2f}".format(t1-t0))
elif strategy == "Uncertainty":
from query_strategies.LeastConfidence import LeastConfidenceSampling
idxs_selected = np.concatenate((acc_idxs.astype(np.int64), rej_idxs.astype(np.int64)), axis=0)
curr_lb = np.concatenate((idxs_lb, idxs_selected), axis=0)
q_strategy = LeastConfidenceSampling(task_model, task_model_type, n_pool, curr_lb, 10, DATA_NAME, NET, gpu=GPU, **self.hyperparameters["TRAINING"])
# print information
print(DATA_NAME)
print(type(q_strategy).__name__)
print('================Round {:d}==============='.format(iteration+1))
# query new samples
t0 = time.time()
new_indices, scores = q_strategy.query(complete_dataset, NUM_QUERY, idxs_selected)
t1 = time.time()
print("Query time is {:.2f}".format(t1-t0))
# elif strategy == "Diversity":
# from query_strategies.coreset import CoreSetSampling
# q_strategy = CoreSetSampling(task_model, task_model_type, n_pool, 512, idxs_lb, DATA_NAME, NET, gpu=GPU, **self.hyperparameters["TRAINING"])
# # print information
# print(DATA_NAME)
# print(type(q_strategy).__name__)
# print('================Round {:d}==============='.format(iteration+1))
# embedding = q_strategy.get_embedding(complete_dataset)
# # query new samples
# t0 = time.time()
# new_indices, scores = q_strategy.query(embedding, NUM_QUERY)
# t1 = time.time()
# print("Query time is {:.2f}".format(t1-t0))
# elif strategy == "Hybrid":
# from query_strategies.badge import BadgeSampling
# q_strategy = BadgeSampling(task_model, task_model_type, n_pool, 512, idxs_lb, 10, DATA_NAME, NET, gpu=GPU, **self.hyperparameters["TRAINING"])
# # print information
# print(DATA_NAME)
# print(type(q_strategy).__name__)
# print('================Round {:d}==============='.format(iteration+1))
# # query new samples
# t0 = time.time()
# new_indices, scores = q_strategy.query(complete_dataset, NUM_QUERY)
# t1 = time.time()
# print("Query time is {:.2f}".format(t1-t0))
elif strategy == "TBSampling":
# TODO hard coded parameters...
period = 80
print(DATA_NAME)
print("TBSampling")
print('================Round {:d}==============='.format(iteration+1))
t0 = time.time()
new_indices, scores = self._suggest_abnormal(strategy, iteration, idxs_lb, acc_idxs, rej_idxs, budget, period)
t1 = time.time()
print("Query time is {:.2f}".format(t1-t0))
elif strategy == "Feedback":
# TODO hard coded parameters...suggest_abnormal
period = 80
print(DATA_NAME)
print("Feedback")
print('================Round {:d}==============='.format(iteration+1))
t0 = time.time()
new_indices, scores = self._suggest_abnormal(strategy, iteration, idxs_lb, acc_idxs, rej_idxs, budget, period)
t1 = time.time()
print("Query time is {:.2f}".format(t1-t0))
else:
raise NotImplementedError
# TODO return the suggest labels, need to develop pesudo label generation technique in the future
true_labels = self.data_provider.train_labels(iteration)
return new_indices, true_labels[new_indices], scores
def al_train(self, iteration, indices):
CONTENT_PATH = self.data_provider.content_path
# record output information
now = time.strftime("%Y-%m-%d-%H_%M_%S", time.localtime(time.time()))
sys.stdout = open(os.path.join(CONTENT_PATH, now+".txt"), "w")
# for reproduce purpose
print("New indices:\t{}".format(len(indices)))
self.save_human_selection(iteration, indices)
lb_idx = self.get_epoch_index(iteration)
train_idx = np.hstack((lb_idx, indices))
print("Training indices:\t{}".format(len(train_idx)))
print("Valid indices:\t{}".format(len(set(train_idx))))
TOTAL_EPOCH = self.hyperparameters["TRAINING"]["total_epoch"]
NET = self.hyperparameters["TRAINING"]["NET"]
DEVICE = self.data_provider.DEVICE
NEW_ITERATION = self.get_max_iter() + 1
GPU = self.hyperparameters["GPU"]
DATA_NAME = self.hyperparameters["DATASET"]
sys.path.append(CONTENT_PATH)
# loading neural network
from Model.model import resnet18
task_model = resnet18()
resume_path = os.path.join(CONTENT_PATH, "Model", "Iteration_{}".format(iteration))
state_dict = torch.load(os.path.join(resume_path, "subject_model.pth"), map_location=torch.device("cpu"))
task_model.load_state_dict(state_dict)
self.save_iteration_index(NEW_ITERATION, train_idx)
task_model_type = "pytorch"
# start experiment
n_pool = self.hyperparameters["TRAINING"]["train_num"] # 50000
save_path = os.path.join(CONTENT_PATH, "Model", "Iteration_{}".format(NEW_ITERATION))
os.makedirs(save_path, exist_ok=True)
from query_strategies.random import RandomSampling
q_strategy = RandomSampling(task_model, task_model_type, n_pool, lb_idx, 10, DATA_NAME, NET, gpu=GPU, **self.hyperparameters["TRAINING"])
# print information
print('================Round {:d}==============='.format(NEW_ITERATION))
# update
q_strategy.update_lb_idxs(train_idx)
resnet_model = resnet18()
train_dataset = torchvision.datasets.CIFAR10(root="..//data//CIFAR10", download=True, train=True, transform=self.hyperparameters["TRAINING"]['transform_tr'])
test_dataset = torchvision.datasets.CIFAR10(root="..//data//CIFAR10", download=True, train=False, transform=self.hyperparameters["TRAINING"]['transform_te'])
t1 = time.time()
q_strategy.train(total_epoch=TOTAL_EPOCH, task_model=resnet_model, complete_dataset=train_dataset,save_path=None)
t2 = time.time()
print("Training time is {:.2f}".format(t2-t1))
self.save_subject_model(NEW_ITERATION, q_strategy.task_model.state_dict())
# compute accuracy at each round
accu = q_strategy.test_accu(test_dataset)
print('Accuracy {:.3f}'.format(100*accu))
def get_max_iter(self):
path = os.path.join(self.data_provider.content_path, "Model")
dir_list = os.listdir(path)
max_iter = -1
for dir in dir_list:
if "Iteration_" in dir:
i = int(dir.replace("Iteration_",""))
max_iter = max(max_iter, i)
return max_iter
def save_human_selection(self, iteration, indices):
"""
save the selected index message from DVI frontend
:param epoch_id:
:param indices: list, selected indices
:return:
"""
save_location = os.path.join(self.data_provider.model_path, "Iteration_{}".format(iteration), "human_select.json")
with open(save_location, "w") as f:
json.dump(indices, f)
def save_iteration_index(self, iteration, idxs):
new_iteration_dir = os.path.join(self.data_provider.content_path, "Model", "Iteration_{}".format(iteration))
os.makedirs(new_iteration_dir, exist_ok=True)
save_location = os.path.join(new_iteration_dir, "index.json")
with open(save_location, "w") as f:
json.dump(idxs.tolist(), f)
def save_subject_model(self, iteration, state_dict):
new_iteration_dir = os.path.join(self.data_provider.content_path, "Model", "Iteration_{}".format(iteration))
model_path = os.path.join(new_iteration_dir, "subject_model.pth")
torch.save(state_dict, model_path)
def vis_train(self, iteration, **config):
# preprocess
PREPROCESS = config["VISUALIZATION"]["PREPROCESS"]
B_N_EPOCHS = config["VISUALIZATION"]["BOUNDARY"]["B_N_EPOCHS"]
L_BOUND = config["VISUALIZATION"]["BOUNDARY"]["L_BOUND"]
if PREPROCESS:
self.data_provider._meta_data(iteration)
if B_N_EPOCHS != 0:
LEN = len(self.data_provider.train_labels(iteration))
self.data_provider._estimate_boundary(iteration, LEN//10, l_bound=L_BOUND)
# train visualization model
CLASSES = config["CLASSES"]
DATASET = config["DATASET"]
# DEVICE = torch.device("cuda:{:}".format(GPU_ID) if torch.cuda.is_available() else "cpu")
################################################# VISUALIZATION PARAMETERS ########################################
PREPROCESS = config["VISUALIZATION"]["PREPROCESS"]
B_N_EPOCHS = config["VISUALIZATION"]["BOUNDARY"]["B_N_EPOCHS"]
L_BOUND = config["VISUALIZATION"]["BOUNDARY"]["L_BOUND"]
LAMBDA = config["VISUALIZATION"]["LAMBDA"]
HIDDEN_LAYER = config["VISUALIZATION"]["HIDDEN_LAYER"]
N_NEIGHBORS = config["VISUALIZATION"]["N_NEIGHBORS"]
MAX_EPOCH = config["VISUALIZATION"]["MAX_EPOCH"]
S_N_EPOCHS = config["VISUALIZATION"]["S_N_EPOCHS"]
PATIENT = config["VISUALIZATION"]["PATIENT"]
VIS_MODEL_NAME = config["VISUALIZATION"]["VIS_MODEL_NAME"]
RESOLUTION = config["VISUALIZATION"]["RESOLUTION"]
EVALUATION_NAME = config["VISUALIZATION"]["EVALUATION_NAME"]
NET = config["TRAINING"]["NET"]
if self.dense:
# TODO test this part
raise NotImplementedError
epoch_num = config["TRAINING"]["total_epoch"]
INIT_NUM = config["VISUALIZATION"]["INIT_NUM"]
MAX_HAUSDORFF = config["VISUALIZATION"]["MAX_HAUSDORFF"]
ALPHA = config["VISUALIZATION"]["ALPHA"]
BETA = config["VISUALIZATION"]["BETA"]
T_N_EPOCHS = config["VISUALIZATION"]["T_N_EPOCHS"]
segmenter = DenseALSegmenter(data_provider=self.data_provider, threshold=78.5, epoch_num=epoch_num)
# segment epoch
t0 = time.time()
SEGMENTS = segmenter.segment(iteration)
t1 = time.time()
print(SEGMENTS)
segment_path = os.path.join(self.data_provider.content_path, "Model", "Iteration_{}".format(iteration),"segments.json")
with open(segment_path, "w") as f:
json.dump(SEGMENTS, f)
LEN = self.data_provider.label_num(iteration)
prev_selected = np.random.choice(np.arange(LEN), size=INIT_NUM, replace=False)
prev_embedding = None
start_point = len(SEGMENTS)-1
c0=None
d0=None
for seg in range(start_point,-1,-1):
epoch_start, epoch_end = SEGMENTS[seg]
self.data_provider.update_interval(epoch_s=epoch_start, epoch_e=epoch_end)
optimizer = torch.optim.Adam(model.parameters(), lr=.01, weight_decay=1e-5)
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=4, gamma=.1)
t2 = time.time()
spatial_cons = kcHybridDenseALSpatialEdgeConstructor(data_provider=self.data_provider, init_num=INIT_NUM, s_n_epochs=S_N_EPOCHS, b_n_epochs=B_N_EPOCHS, n_neighbors=N_NEIGHBORS, MAX_HAUSDORFF=MAX_HAUSDORFF, ALPHA=ALPHA, BETA=BETA, iteration=iteration, init_idxs=prev_selected, init_embeddings=prev_embedding, c0=c0, d0=d0)
s_edge_to, s_edge_from, s_probs, feature_vectors, embedded, coefficient, time_step_nums, time_step_idxs_list, knn_indices, sigmas, rhos, attention, (c0,d0) = spatial_cons.construct()
temporal_cons = GlobalTemporalEdgeConstructor(X=feature_vectors, time_step_nums=time_step_nums, sigmas=sigmas, rhos=rhos, n_neighbors=N_NEIGHBORS, n_epochs=T_N_EPOCHS)
t_edge_to, t_edge_from, t_probs = temporal_cons.construct()
t3 = time.time()
edge_to = np.concatenate((s_edge_to, t_edge_to),axis=0)
edge_from = np.concatenate((s_edge_from, t_edge_from), axis=0)
probs = np.concatenate((s_probs, t_probs), axis=0)
probs = probs / (probs.max()+1e-3)
eliminate_zeros = probs>1e-3
edge_to = edge_to[eliminate_zeros]
edge_from = edge_from[eliminate_zeros]
probs = probs[eliminate_zeros]
# save result
save_dir = os.path.join(self.data_provider.model_path, "Iteration_{}".format(iteration), "SV_time_al_hybrid.json")
if not os.path.exists(save_dir):
evaluation = dict()
else:
f = open(save_dir, "r")
evaluation = json.load(f)
f.close()
if "complex_construction" not in evaluation.keys():
evaluation["complex_construction"] = dict()
evaluation["complex_construction"][str(seg)] = round(t3-t2, 3)
with open(save_dir, 'w') as f:
json.dump(evaluation, f)
print("constructing timeVis complex for {}-th segment in {:.1f} seconds.".format(seg, t3-t2))
dataset = HybridDataHandler(edge_to, edge_from, feature_vectors, attention, embedded, coefficient)
n_samples = int(np.sum(S_N_EPOCHS * probs) // 1)
# chosse sampler based on the number of dataset
if len(edge_to) > 2^24:
sampler = CustomWeightedRandomSampler(probs, n_samples, replacement=True)
else:
sampler = WeightedRandomSampler(probs, n_samples, replacement=True)
edge_loader = DataLoader(dataset, batch_size=1000, sampler=sampler)
self.trainer.update_vis_model(model)
self.trainer.update_optimizer(optimizer)
self.trainer.update_lr_scheduler(lr_scheduler)
self.trainer.update_edge_loader(edge_loader)
t2=time.time()
self.trainer.train(PATIENT, MAX_EPOCH)
t3 = time.time()
# save result
save_dir = os.path.join(self.data_provider.model_path, "Iteration_{}".format(iteration), "SV_time_al_hybrid.json")
if not os.path.exists(save_dir):
evaluation = dict()
else:
f = open(save_dir, "r")
evaluation = json.load(f)
f.close()
if "training" not in evaluation.keys():
evaluation["training"] = dict()
evaluation["training"][str(seg)] = round(t3-t2, 3)
with open(save_dir, 'w') as f:
json.dump(evaluation, f)
self.trainer.save(save_dir=os.path.join(self.data_provider.model_path, "Iteration_{}".format(iteration)), file_name="{}_{}".format(VIS_MODEL_NAME, seg))
model = self.trainer.model
# update prev_idxs and prev_embedding
prev_selected = time_step_idxs_list[0]
prev_data = torch.from_numpy(feature_vectors[:len(prev_selected)]).to(dtype=torch.float32, device=self.data_provider.DEVICE)
model.to(device=self.data_provider.DEVICE)
prev_embedding = model.encoder(prev_data).cpu().detach().numpy()
# raise NotImplementedError
print("Successful train all visualization models!")
else:
t0 = time.time()
spatial_cons = SingleEpochSpatialEdgeConstructor(self.data_provider, iteration, S_N_EPOCHS, B_N_EPOCHS, 15)
edge_to, edge_from, probs, feature_vectors, attention = spatial_cons.construct()
t1 = time.time()
probs = probs / (probs.max()+1e-3)
eliminate_zeros = probs>1e-3
edge_to = edge_to[eliminate_zeros]
edge_from = edge_from[eliminate_zeros]
probs = probs[eliminate_zeros]
# save result
save_dir = os.path.join(self.data_provider.model_path, "SV_time_al.json")
if not os.path.exists(save_dir):
evaluation = dict()
else:
f = open(save_dir, "r")
evaluation = json.load(f)
f.close()
if "complex_construction" not in evaluation.keys():
evaluation["complex_construction"] = dict()
evaluation["complex_construction"][str(iteration)] = round(t1-t0, 3)
with open(save_dir, 'w') as f:
json.dump(evaluation, f)
print("constructing timeVis complex in {:.1f} seconds.".format(t1-t0))
dataset = DataHandler(edge_to, edge_from, feature_vectors, attention)
n_samples = int(np.sum(S_N_EPOCHS * probs) // 1)
# chosse sampler based on the number of dataset
if len(edge_to) > 2^24:
sampler = CustomWeightedRandomSampler(probs, n_samples, replacement=True)
else:
sampler = WeightedRandomSampler(probs, n_samples, replacement=True)
edge_loader = DataLoader(dataset, batch_size=512, sampler=sampler)
self.trainer.update_edge_loader(edge_loader)
t2=time.time()
self.trainer.train(PATIENT, MAX_EPOCH)
t3 = time.time()
# save result
save_dir = os.path.join(self.data_provider.model_path, "SV_time_al.json")
if not os.path.exists(save_dir):
evaluation = dict()
else:
f = open(save_dir, "r")
evaluation = json.load(f)
f.close()
if "training" not in evaluation.keys():
evaluation["training"] = dict()
evaluation["training"][str(iteration)] = round(t3-t2, 3)
with open(save_dir, 'w') as f:
json.dump(evaluation, f)
save_dir = os.path.join(self.data_provider.model_path, "Iteration_{}".format(iteration))
os.makedirs(save_dir, exist_ok=True)
self.trainer.save(save_dir=save_dir, file_name=VIS_MODEL_NAME)
# TODO evaluate visualization model, train and test
evaluator = ALEvaluator(self.data_provider, self.projector)
evaluator.save_epoch_eval(iteration, file_name=EVALUATION_NAME)
#################################################################################################################
# #
# Sample Selection #
# #
#################################################################################################################
def _save(self, iteration, ftm):
with open(os.path.join(self.data_provider.content_path, "Model","Iteration_{}".format(iteration), 'sample_recommender.pkl'), 'wb') as f:
pickle.dump(ftm, f, pickle.HIGHEST_PROTOCOL)
def _init_detection(self, iteration, lb_idxs, period=80):
# prepare trajectory
embedding_path = os.path.join(self.data_provider.content_path,"Model", "Iteration_{}".format(iteration),'trajectory_embeddings.npy')
if os.path.exists(embedding_path):
trajectories = np.load(embedding_path)
print("Load trajectories from cache!")
else:
# extract samples
train_num = self.data_provider.train_num
# change epoch_NUM
epoch_num = (self.data_provider.e - self.data_provider.s)//self.data_provider.p + 1
embeddings_2d = np.zeros((epoch_num, train_num, 2))
for i in range(self.data_provider.s, self.data_provider.e+1, self.data_provider.p):
# for i in range(self.data_provider.e - self.data_provider.p*(self.period-1), self.data_provider.e+1, self.data_provider.p):
# id = (i-(self.data_provider.e - (self.data_provider.p-1)*self.period))//self.data_provider.p
id = (i - self.data_provider.s)//self.data_provider.p
embeddings_2d[id] = self.projector.batch_project(iteration, i, self.data_provider.train_representation(iteration, i))
trajectories = np.transpose(embeddings_2d, [1,0,2])
np.save(embedding_path, trajectories)
# prepare uncertainty
uncertainty_path = os.path.join(self.data_provider.content_path, "Model","Iteration_{}".format(iteration), 'uncertainties.npy')
if os.path.exists(uncertainty_path):
uncertainty = np.load(uncertainty_path)
else:
samples = self.data_provider.train_representation(iteration, epoch_num)
pred = self.data_provider.get_pred(iteration, epoch_num, samples)
uncertainty = 1 - np.amax(softmax(pred, axis=1), axis=1)
np.save(uncertainty_path, uncertainty)
ulb_idxs = self.data_provider.get_unlabeled_idx(len(uncertainty), lb_idxs)
# prepare sampling manager
ntd_path = os.path.join(self.data_provider.content_path, "Model","Iteration_{}".format(iteration), 'sample_recommender.pkl')
if os.path.exists(ntd_path):
with open(ntd_path, 'rb') as f:
ntd = pickle.load(f)
else:
ntd = Recommender(uncertainty[ulb_idxs], trajectories[ulb_idxs], 30, period=period,metric="a")
print("Detecting abnormal....")
ntd.clustered()
print("Finish detection!")
self._save(iteration, ntd)
return ntd, ulb_idxs
def _suggest_abnormal(self, strategy, iteration, lb_idxs, acc_idxs, rej_idxs, budget, period):
ntd,ulb_idxs = self._init_detection(iteration, lb_idxs, period)
map_ulb = ulb_idxs.tolist()
map_acc_idxs = np.array([map_ulb.index(i) for i in acc_idxs]).astype(np.int32)
map_rej_idxs = np.array([map_ulb.index(i) for i in rej_idxs]).astype(np.int32)
if strategy == "TBSampling":
suggest_idxs, scores = ntd.sample_batch_init(map_acc_idxs, map_rej_idxs, budget)
elif strategy == "Feedback":
suggest_idxs, scores = ntd.sample_batch(map_acc_idxs, map_rej_idxs, budget)
else:
raise NotImplementedError
return ulb_idxs[suggest_idxs], scores
def _suggest_normal(self, strategy, iteration, lb_idxs, acc_idxs, rej_idxs, budget, period):
ntd, ulb_idxs = self._init_detection(iteration, lb_idxs, period)
map_ulb = ulb_idxs.tolist()
map_acc_idxs = np.array([map_ulb.index(i) for i in acc_idxs]).astype(np.int32)
map_rej_idxs = np.array([map_ulb.index(i) for i in rej_idxs]).astype(np.int32)
if strategy == "TBSampling":
suggest_idxs, _ = ntd.sample_batch_normal_init(map_acc_idxs, map_rej_idxs, budget)
elif strategy == "Feedback":
suggest_idxs, _ = ntd.sample_batch_normal(map_acc_idxs, map_rej_idxs, budget)
else:
raise NotImplementedError
return ulb_idxs[suggest_idxs]
class AnormalyTimeVisBackend(TimeVisBackend):
def __init__(self, data_provider, projector, vis, evaluator, period, **hyperparameters) -> None:
super().__init__(data_provider, projector, vis, evaluator, **hyperparameters)
self.period = period
file_path = os.path.join(self.data_provider.content_path, 'clean_label.json')
with open(file_path, "r") as f:
self.clean_labels = np.array(json.load(f))
def reset(self):
return
#################################################################################################################
# #
# Anormaly Detection #
# #
#################################################################################################################
def _save(self, ntd):
with open(os.path.join(self.data_provider.content_path, 'sample_recommender.pkl'), 'wb') as f:
pickle.dump(ntd, f, pickle.HIGHEST_PROTOCOL)
def _init_detection(self):
# prepare trajectories
embedding_path = os.path.join(self.data_provider.content_path, 'trajectory_embeddings.npy')
if os.path.exists(embedding_path):
trajectories = np.load(embedding_path)
else:
# extract samples
train_num = self.data_provider.train_num
# change epoch_NUM
epoch_num = (self.data_provider.e - self.data_provider.s)//self.data_provider.p + 1
embeddings_2d = np.zeros((epoch_num, train_num, 2))
for i in range(self.data_provider.s, self.data_provider.e+1, self.data_provider.p):
# for i in range(self.data_provider.e - self.data_provider.p*(self.period-1), self.data_provider.e+1, self.data_provider.p):
# id = (i-(self.data_provider.e - (self.data_provider.p-1)*self.period))//self.data_provider.p
id = (i - self.data_provider.s)//self.data_provider.p
embeddings_2d[id] = self.projector.batch_project(i, self.data_provider.train_representation(i))
trajectories = np.transpose(embeddings_2d, [1,0,2])
np.save(embedding_path, trajectories)
# prepare uncertainty scores
uncertainty_path = os.path.join(self.data_provider.content_path, 'uncertainties.npy')
if os.path.exists(uncertainty_path):
uncertainty = np.load(uncertainty_path)
else:
epoch_num = (self.data_provider.e - self.data_provider.s)//self.data_provider.p + 1
samples = self.data_provider.train_representation(epoch_num)
pred = self.data_provider.get_pred(epoch_num, samples)
uncertainty = 1 - np.amax(softmax(pred, axis=1), axis=1)
np.save(uncertainty_path, uncertainty)
# prepare sampling manager
ntd_path = os.path.join(self.data_provider.content_path, 'sample_recommender.pkl')
if os.path.exists(ntd_path):
with open(ntd_path, 'rb') as f:
ntd = pickle.load(f)
else:
ntd = Recommender(uncertainty, trajectories, 30,period=self.period,metric="a")
print("Detecting abnormal....")
ntd.clustered()
print("Finish detection!")
self._save(ntd)
return ntd
def suggest_abnormal(self, strategy, acc_idxs, rej_idxs, budget):
ntd = self._init_detection()
if strategy == "TBSampling":
suggest_idxs, scores = ntd.sample_batch_init(acc_idxs, rej_idxs, budget)
elif strategy == "Feedback":
suggest_idxs, scores = ntd.sample_batch(acc_idxs, rej_idxs, budget)
else:
raise NotImplementedError
suggest_labels = self.clean_labels[suggest_idxs]
return suggest_idxs, scores, suggest_labels
def suggest_normal(self, strategy, acc_idxs, rej_idxs, budget):
ntd = self._init_detection()
if strategy == "TBSampling":
suggest_idxs, _ = ntd.sample_batch_normal_init(acc_idxs, rej_idxs, budget)
elif strategy == "Feedback":
suggest_idxs, _ = ntd.sample_batch_normal(acc_idxs, rej_idxs, budget)
else:
raise NotImplementedError
suggest_labels = self.clean_labels[suggest_idxs]
return suggest_idxs, suggest_labels