tags: | |
- FrozenLake-v1-4x4 | |
- q-learning | |
- reinforcement-learning | |
- custom-implementation | |
model-index: | |
- name: q-FrozenLake-v1-4x4 | |
results: | |
- task: | |
type: reinforcement-learning | |
name: reinforcement-learning | |
dataset: | |
name: FrozenLake-v1-4x4 | |
type: FrozenLake-v1-4x4 | |
metrics: | |
- type: mean_reward | |
value: 0.56 +/- 0.50 | |
name: mean_reward | |
verified: false | |
# **Q-Learning** Agent playing1 **FrozenLake-v1** | |
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . | |
## Usage | |
```python | |
model = load_from_hub(repo_id="PierreCounathe/q-FrozenLake-v1-4x4", filename="q-learning.pkl") | |
# Don't forget to check if you need to add additional attributes (is_slippery=False etc) | |
env = gym.make(model["env_id"], model["is_slippery"], model["map_name"], model["render_mode"], model["desc"]) | |
``` | |