Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks
Paper
•
1908.10084
•
Published
•
9
This is a sentence-transformers model finetuned from sentence-transformers/all-mpnet-base-v2. The main goal of thius fine-tuned model is to assignb memes into 3 different clusters:
SentenceTransformer(
(0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = 'PietroSaveri/meme-cluster-classifier'
fine_tuned_model = SentenceTransformer(model)
# 3) Compute centroids just once
seed_centroids = {}
for cat, texts in seed_texts.items():
embs = embedding_model.encode(texts, convert_to_numpy=True)
seed_centroids[cat] = embs.mean(axis=0)
# 4) Define a tiny helper for cosine
def cosine_sim(a, b):
return np.dot(a, b) / (np.linalg.norm(a) * np.linalg.norm(b))
# 5) Wrap it all up in a function
def predict(text: str):
vec = fine_tuned_model.encode(text, convert_to_numpy=True)
sims = { cat: cosine_sim(vec, centroid) for cat, centroid in seed_centroids.items()}
# sort by descending similarity
assigned = max(sims, key=sims.get)
return sims, assigned
# --- USAGE ---
text = "Why did the biologist go broke? Because his cells were division!"
scores, ranking = predict(text)
print("Raw scores:")
for cat, score in scores.items():
print(f" {cat:25s}: {score:.3f}")Raw scores:
# Conspiracy : 0.700
# Wordplay & Nerd Humor : 0.907
# Educational Science Humor: 0.903
meme-dev-binaryBinaryClassificationEvaluator| Metric | Value |
|---|---|
| cosine_accuracy | 1.0 |
| cosine_accuracy_threshold | 0.7175 |
| cosine_f1 | 1.0 |
| cosine_f1_threshold | 0.7175 |
| cosine_precision | 1.0 |
| cosine_recall | 1.0 |
| cosine_ap | 1.0 |
| cosine_mcc | 1.0 |
sentence_0, sentence_1, and label| sentence_0 | sentence_1 | label | |
|---|---|---|---|
| type | string | string | float |
| details |
|
|
|
| sentence_0 | sentence_1 | label |
|---|---|---|
The cure for AIDS was discovered decades ago but suppressed to reduce world population. |
Einstein’s theory of general relativity describes gravity not as a force, but as the curvature of spacetime caused by mass and energy. |
0.0 |
5G towers are designed to activate nanoparticles from vaccines for population control. |
The Mandela Effect proves we've shifted into an alternate reality. |
1.0 |
The Georgia Guidestones were a NWO manifesto, destroyed to hide the plans. |
Elvis Presley faked his death and is still alive, living in secret. |
1.0 |
OnlineContrastiveLosseval_strategy: stepsper_device_train_batch_size: 16per_device_eval_batch_size: 16num_train_epochs: 4multi_dataset_batch_sampler: round_robinoverwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 16per_device_eval_batch_size: 16per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1num_train_epochs: 4max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.0warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters: auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: round_robin| Epoch | Step | Training Loss | meme-dev-binary_cosine_ap |
|---|---|---|---|
| 0.5 | 190 | - | 0.9999 |
| 1.0 | 380 | - | 1.0000 |
| 1.3158 | 500 | 0.3125 | - |
| 1.5 | 570 | - | 1.0000 |
| 2.0 | 760 | - | 0.9999 |
| 2.5 | 950 | - | 1.0000 |
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
Base model
sentence-transformers/all-mpnet-base-v2