metadata
pipeline_tag: text-to-image
widget:
- text: Three cow grazing in a bay window
output:
url: cow.png
- text: >-
Super Closeup Portrait, action shot, Profoundly dark whitish meadow, glass
flowers, Stains, space grunge style, Jeanne d'Arc wearing White Olive
green used styled Cotton frock, Wielding thin silver sword, Sci-fi vibe,
dirty, noisy, Vintage monk style, very detailed, hd
output:
url: girl.png
- text: >-
spacious,circular underground room,{dirtied and bloodied white
tiles},amalgamation,flesh,plastic,dark fabric,core,pulsating
heart,limbs,human-like arms,twisted angelic wings,arms,covered in
skin,feathers,scales,undulate slowly,unseen current,convulsing,head
area,chaotic,mass of eyes,mouths,no human features,smaller
forms,cherubs,demons,golden wires,surround,holy light,tv static
effect,golden glow,shadows,terrifying essence,overwhelming
presence,nightmarish,landscape,sparse,cavernous,eerie,dynamic,motion,striking,awe-inspiring,nightmarish,nightmarish,nightmare,horrifying,bio-mechanical,body
horror,amalgamation
output:
url: aigle.png
license: gpl-3.0
This is the initial version of the image model trained on the Bittensor network within subnet 17. It's not expected for this model to perform as well as MidJourney V6 at the moment. However, it does generate better images than base SDXL model.
Trained on the dataset of Subnet 19 Vision.
Subnet 17 Checkpoint
Model ID : gtsru/sn17-dek-012
Revision : 5852d39e8413a377a3477b8278ade9af311f83a4
UID : 42
Perplexity : 1.1325
Settings for BitDiffusionV0.1
Use these settings for the best results with BitDiffusionV0.1:
CFG Scale: Use a CFG scale of 8
Steps: 40 to 60 steps
Sampler: DPM++ 2M SDE
Scheduler: Karras
Resolution: 1024x1024
For best results, set a negative_prompt
Use it with 🧨 diffusers
import torch
from diffusers import (
StableDiffusionXLPipeline,
KDPM2AncestralDiscreteScheduler,
AutoencoderKL
)
# Load VAE component
vae = AutoencoderKL.from_pretrained(
"madebyollin/sdxl-vae-fp16-fix",
torch_dtype=torch.float16
)
# Configure the pipeline
pipe = StableDiffusionXLPipeline.from_pretrained(
"PlixAI/BitDiffusionV0.1",
vae=vae,
torch_dtype=torch.float16
)
pipe.scheduler = KDPM2AncestralDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.to('cuda')
# Define prompts and generate image
prompt = "black fluffy gorgeous dangerous cat animal creature, large orange eyes, big fluffy ears, piercing gaze, full moon, dark ambiance, best quality, extremely detailed"
negative_prompt = "nsfw, bad quality, bad anatomy, worst quality, low quality, low resolutions, extra fingers, blur, blurry, ugly, wrongs proportions, watermark, image artifacts, lowres, ugly, jpeg artifacts, deformed, noisy image"
image = pipe(
prompt,
negative_prompt=negative_prompt,
width=1024,
height=1024,
guidance_scale=7.5,
num_inference_steps=50
).images[0]
Training Subnet : https://github.com/PlixML/pixel
Data Subnet : https://github.com/namoray/vision