|
weight = None |
|
resume = False |
|
evaluate = True |
|
test_only = False |
|
seed = 25326354 |
|
save_path = 'exp/s3dis/semseg-pt-v3m1-0-rpe' |
|
num_worker = 24 |
|
batch_size = 12 |
|
batch_size_val = None |
|
batch_size_test = None |
|
epoch = 3000 |
|
eval_epoch = 100 |
|
sync_bn = False |
|
enable_amp = True |
|
empty_cache = False |
|
find_unused_parameters = False |
|
mix_prob = 0.8 |
|
param_dicts = [dict(keyword='block', lr=0.0006)] |
|
hooks = [ |
|
dict(type='CheckpointLoader'), |
|
dict(type='IterationTimer', warmup_iter=2), |
|
dict(type='InformationWriter'), |
|
dict(type='SemSegEvaluator'), |
|
dict(type='CheckpointSaver', save_freq=None), |
|
dict(type='PreciseEvaluator', test_last=False) |
|
] |
|
train = dict(type='DefaultTrainer') |
|
test = dict(type='SemSegTester', verbose=True) |
|
model = dict( |
|
type='DefaultSegmentorV2', |
|
num_classes=13, |
|
backbone_out_channels=64, |
|
backbone=dict( |
|
type='PT-v3m1', |
|
in_channels=6, |
|
order=['z', 'z-trans', 'hilbert', 'hilbert-trans'], |
|
stride=(2, 2, 2, 2), |
|
enc_depths=(2, 2, 2, 6, 2), |
|
enc_channels=(32, 64, 128, 256, 512), |
|
enc_num_head=(2, 4, 8, 16, 32), |
|
enc_patch_size=(128, 128, 128, 128, 128), |
|
dec_depths=(2, 2, 2, 2), |
|
dec_channels=(64, 64, 128, 256), |
|
dec_num_head=(4, 4, 8, 16), |
|
dec_patch_size=(128, 128, 128, 128), |
|
mlp_ratio=4, |
|
qkv_bias=True, |
|
qk_scale=None, |
|
attn_drop=0.0, |
|
proj_drop=0.0, |
|
drop_path=0.3, |
|
shuffle_orders=True, |
|
pre_norm=True, |
|
enable_rpe=True, |
|
enable_flash=False, |
|
upcast_attention=True, |
|
upcast_softmax=True, |
|
cls_mode=False, |
|
pdnorm_bn=False, |
|
pdnorm_ln=False, |
|
pdnorm_decouple=True, |
|
pdnorm_adaptive=False, |
|
pdnorm_affine=True, |
|
pdnorm_conditions=('ScanNet', 'S3DIS', 'Structured3D')), |
|
criteria=[ |
|
dict(type='CrossEntropyLoss', loss_weight=1.0, ignore_index=-1), |
|
dict( |
|
type='LovaszLoss', |
|
mode='multiclass', |
|
loss_weight=1.0, |
|
ignore_index=-1) |
|
]) |
|
optimizer = dict(type='AdamW', lr=0.006, weight_decay=0.05) |
|
scheduler = dict( |
|
type='OneCycleLR', |
|
max_lr=[0.006, 0.0006], |
|
pct_start=0.05, |
|
anneal_strategy='cos', |
|
div_factor=10.0, |
|
final_div_factor=1000.0) |
|
dataset_type = 'S3DISDataset' |
|
data_root = 'data/s3dis' |
|
data = dict( |
|
num_classes=13, |
|
ignore_index=-1, |
|
names=[ |
|
'ceiling', 'floor', 'wall', 'beam', 'column', 'window', 'door', |
|
'table', 'chair', 'sofa', 'bookcase', 'board', 'clutter' |
|
], |
|
train=dict( |
|
type='S3DISDataset', |
|
split=('Area_1', 'Area_2', 'Area_3', 'Area_4', 'Area_6'), |
|
data_root='data/s3dis', |
|
transform=[ |
|
dict(type='CenterShift', apply_z=True), |
|
dict( |
|
type='RandomDropout', |
|
dropout_ratio=0.2, |
|
dropout_application_ratio=0.2), |
|
dict( |
|
type='RandomRotate', |
|
angle=[-1, 1], |
|
axis='z', |
|
center=[0, 0, 0], |
|
p=0.5), |
|
dict( |
|
type='RandomRotate', |
|
angle=[-0.015625, 0.015625], |
|
axis='x', |
|
p=0.5), |
|
dict( |
|
type='RandomRotate', |
|
angle=[-0.015625, 0.015625], |
|
axis='y', |
|
p=0.5), |
|
dict(type='RandomScale', scale=[0.9, 1.1]), |
|
dict(type='RandomFlip', p=0.5), |
|
dict(type='RandomJitter', sigma=0.005, clip=0.02), |
|
dict(type='ChromaticAutoContrast', p=0.2, blend_factor=None), |
|
dict(type='ChromaticTranslation', p=0.95, ratio=0.05), |
|
dict(type='ChromaticJitter', p=0.95, std=0.05), |
|
dict( |
|
type='GridSample', |
|
grid_size=0.02, |
|
hash_type='fnv', |
|
mode='train', |
|
return_grid_coord=True), |
|
dict(type='SphereCrop', sample_rate=0.6, mode='random'), |
|
dict(type='SphereCrop', point_max=204800, mode='random'), |
|
dict(type='CenterShift', apply_z=False), |
|
dict(type='NormalizeColor'), |
|
dict(type='ToTensor'), |
|
dict( |
|
type='Collect', |
|
keys=('coord', 'grid_coord', 'segment'), |
|
feat_keys=('color', 'normal')) |
|
], |
|
test_mode=False, |
|
loop=30), |
|
val=dict( |
|
type='S3DISDataset', |
|
split='Area_5', |
|
data_root='data/s3dis', |
|
transform=[ |
|
dict(type='CenterShift', apply_z=True), |
|
dict( |
|
type='Copy', |
|
keys_dict=dict(coord='origin_coord', |
|
segment='origin_segment')), |
|
dict( |
|
type='GridSample', |
|
grid_size=0.02, |
|
hash_type='fnv', |
|
mode='train', |
|
return_grid_coord=True), |
|
dict(type='CenterShift', apply_z=False), |
|
dict(type='NormalizeColor'), |
|
dict(type='ToTensor'), |
|
dict( |
|
type='Collect', |
|
keys=('coord', 'grid_coord', 'origin_coord', 'segment', |
|
'origin_segment'), |
|
offset_keys_dict=dict( |
|
offset='coord', origin_offset='origin_coord'), |
|
feat_keys=('color', 'normal')) |
|
], |
|
test_mode=False), |
|
test=dict( |
|
type='S3DISDataset', |
|
split='Area_5', |
|
data_root='data/s3dis', |
|
transform=[ |
|
dict(type='CenterShift', apply_z=True), |
|
dict(type='NormalizeColor') |
|
], |
|
test_mode=True, |
|
test_cfg=dict( |
|
voxelize=dict( |
|
type='GridSample', |
|
grid_size=0.02, |
|
hash_type='fnv', |
|
mode='test', |
|
keys=('coord', 'color', 'normal'), |
|
return_grid_coord=True), |
|
crop=None, |
|
post_transform=[ |
|
dict(type='CenterShift', apply_z=False), |
|
dict(type='ToTensor'), |
|
dict( |
|
type='Collect', |
|
keys=('coord', 'grid_coord', 'index'), |
|
feat_keys=('color', 'normal')) |
|
], |
|
aug_transform=[[{ |
|
'type': 'RandomScale', |
|
'scale': [0.9, 0.9] |
|
}], [{ |
|
'type': 'RandomScale', |
|
'scale': [0.95, 0.95] |
|
}], [{ |
|
'type': 'RandomScale', |
|
'scale': [1, 1] |
|
}], [{ |
|
'type': 'RandomScale', |
|
'scale': [1.05, 1.05] |
|
}], [{ |
|
'type': 'RandomScale', |
|
'scale': [1.1, 1.1] |
|
}], |
|
[{ |
|
'type': 'RandomScale', |
|
'scale': [0.9, 0.9] |
|
}, { |
|
'type': 'RandomFlip', |
|
'p': 1 |
|
}], |
|
[{ |
|
'type': 'RandomScale', |
|
'scale': [0.95, 0.95] |
|
}, { |
|
'type': 'RandomFlip', |
|
'p': 1 |
|
}], |
|
[{ |
|
'type': 'RandomScale', |
|
'scale': [1, 1] |
|
}, { |
|
'type': 'RandomFlip', |
|
'p': 1 |
|
}], |
|
[{ |
|
'type': 'RandomScale', |
|
'scale': [1.05, 1.05] |
|
}, { |
|
'type': 'RandomFlip', |
|
'p': 1 |
|
}], |
|
[{ |
|
'type': 'RandomScale', |
|
'scale': [1.1, 1.1] |
|
}, { |
|
'type': 'RandomFlip', |
|
'p': 1 |
|
}]]))) |
|
|