|
weight = 'exp/scannet/semseg-pt-v3m1-1-ppt-extreme/model/model_best.pth' |
|
resume = False |
|
evaluate = True |
|
test_only = False |
|
seed = 44350923 |
|
save_path = 'exp/scannet/semseg-pt-v3m1-1-ppt-extreme' |
|
num_worker = 48 |
|
batch_size = 24 |
|
batch_size_val = None |
|
batch_size_test = None |
|
epoch = 100 |
|
eval_epoch = 100 |
|
sync_bn = False |
|
enable_amp = True |
|
empty_cache = False |
|
find_unused_parameters = True |
|
mix_prob = 0.8 |
|
param_dicts = [dict(keyword='block', lr=0.0005)] |
|
hooks = [ |
|
dict(type='CheckpointLoader'), |
|
dict(type='IterationTimer', warmup_iter=2), |
|
dict(type='InformationWriter'), |
|
dict(type='SemSegEvaluator'), |
|
dict(type='CheckpointSaver', save_freq=None), |
|
dict(type='PreciseEvaluator', test_last=False) |
|
] |
|
train = dict(type='MultiDatasetTrainer') |
|
test = dict(type='SemSegTester', verbose=True) |
|
model = dict( |
|
type='PPT-v1m1', |
|
backbone=dict( |
|
type='PT-v3m1', |
|
in_channels=6, |
|
order=('z', 'z-trans', 'hilbert', 'hilbert-trans'), |
|
stride=(2, 2, 2, 2), |
|
enc_depths=(3, 3, 3, 6, 3), |
|
enc_channels=(48, 96, 192, 384, 512), |
|
enc_num_head=(3, 6, 12, 24, 32), |
|
enc_patch_size=(1024, 1024, 1024, 1024, 1024), |
|
dec_depths=(3, 3, 3, 3), |
|
dec_channels=(64, 96, 192, 384), |
|
dec_num_head=(4, 6, 12, 24), |
|
dec_patch_size=(1024, 1024, 1024, 1024), |
|
mlp_ratio=4, |
|
qkv_bias=True, |
|
qk_scale=None, |
|
attn_drop=0.0, |
|
proj_drop=0.0, |
|
drop_path=0.3, |
|
shuffle_orders=True, |
|
pre_norm=True, |
|
enable_rpe=False, |
|
enable_flash=True, |
|
upcast_attention=False, |
|
upcast_softmax=False, |
|
cls_mode=False, |
|
pdnorm_bn=True, |
|
pdnorm_ln=True, |
|
pdnorm_decouple=True, |
|
pdnorm_adaptive=False, |
|
pdnorm_affine=True, |
|
pdnorm_conditions=('ScanNet', 'S3DIS', 'Structured3D')), |
|
criteria=[ |
|
dict(type='CrossEntropyLoss', loss_weight=1.0, ignore_index=-1), |
|
dict( |
|
type='LovaszLoss', |
|
mode='multiclass', |
|
loss_weight=1.0, |
|
ignore_index=-1) |
|
], |
|
backbone_out_channels=64, |
|
context_channels=256, |
|
conditions=('Structured3D', 'ScanNet', 'S3DIS'), |
|
template='[x]', |
|
clip_model='ViT-B/16', |
|
class_name=('wall', 'floor', 'cabinet', 'bed', 'chair', 'sofa', 'table', |
|
'door', 'window', 'bookshelf', 'bookcase', 'picture', |
|
'counter', 'desk', 'shelves', 'curtain', 'dresser', 'pillow', |
|
'mirror', 'ceiling', 'refrigerator', 'television', |
|
'shower curtain', 'nightstand', 'toilet', 'sink', 'lamp', |
|
'bathtub', 'garbagebin', 'board', 'beam', 'column', 'clutter', |
|
'otherstructure', 'otherfurniture', 'otherprop'), |
|
valid_index=((0, 1, 2, 3, 4, 5, 6, 7, 8, 11, 13, 14, 15, 16, 17, 18, 19, |
|
20, 21, 23, 25, 26, 33, 34, 35), |
|
(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 15, 20, 22, 24, 25, |
|
27, 34), (0, 1, 4, 5, 6, 7, 8, 10, 19, 29, 30, 31, 32)), |
|
backbone_mode=False) |
|
optimizer = dict(type='AdamW', lr=0.005, weight_decay=0.05) |
|
scheduler = dict( |
|
type='OneCycleLR', |
|
max_lr=[0.005, 0.0005], |
|
pct_start=0.05, |
|
anneal_strategy='cos', |
|
div_factor=10.0, |
|
final_div_factor=1000.0) |
|
data = dict( |
|
num_classes=20, |
|
ignore_index=-1, |
|
names=[ |
|
'wall', 'floor', 'cabinet', 'bed', 'chair', 'sofa', 'table', 'door', |
|
'window', 'bookshelf', 'picture', 'counter', 'desk', 'curtain', |
|
'refridgerator', 'shower curtain', 'toilet', 'sink', 'bathtub', |
|
'otherfurniture' |
|
], |
|
train=dict( |
|
type='ConcatDataset', |
|
datasets=[ |
|
dict( |
|
type='Structured3DDataset', |
|
split=['train', 'val', 'test'], |
|
data_root='data/structured3d', |
|
transform=[ |
|
dict(type='CenterShift', apply_z=True), |
|
dict( |
|
type='RandomDropout', |
|
dropout_ratio=0.2, |
|
dropout_application_ratio=0.2), |
|
dict( |
|
type='RandomRotate', |
|
angle=[-1, 1], |
|
axis='z', |
|
center=[0, 0, 0], |
|
p=0.5), |
|
dict( |
|
type='RandomRotate', |
|
angle=[-0.015625, 0.015625], |
|
axis='x', |
|
p=0.5), |
|
dict( |
|
type='RandomRotate', |
|
angle=[-0.015625, 0.015625], |
|
axis='y', |
|
p=0.5), |
|
dict(type='RandomScale', scale=[0.9, 1.1]), |
|
dict(type='RandomFlip', p=0.5), |
|
dict(type='RandomJitter', sigma=0.005, clip=0.02), |
|
dict( |
|
type='ElasticDistortion', |
|
distortion_params=[[0.2, 0.4], [0.8, 1.6]]), |
|
dict( |
|
type='ChromaticAutoContrast', p=0.2, |
|
blend_factor=None), |
|
dict(type='ChromaticTranslation', p=0.95, ratio=0.05), |
|
dict(type='ChromaticJitter', p=0.95, std=0.05), |
|
dict( |
|
type='GridSample', |
|
grid_size=0.02, |
|
hash_type='fnv', |
|
mode='train', |
|
return_grid_coord=True), |
|
dict(type='SphereCrop', sample_rate=0.8, mode='random'), |
|
dict(type='SphereCrop', point_max=102400, mode='random'), |
|
dict(type='CenterShift', apply_z=False), |
|
dict(type='NormalizeColor'), |
|
dict(type='Add', keys_dict=dict(condition='Structured3D')), |
|
dict(type='ToTensor'), |
|
dict( |
|
type='Collect', |
|
keys=('coord', 'grid_coord', 'segment', 'condition'), |
|
feat_keys=('color', 'normal')) |
|
], |
|
test_mode=False, |
|
loop=2), |
|
dict( |
|
type='ScanNetDataset', |
|
split='train', |
|
data_root='data/scannet', |
|
transform=[ |
|
dict(type='CenterShift', apply_z=True), |
|
dict( |
|
type='RandomDropout', |
|
dropout_ratio=0.2, |
|
dropout_application_ratio=0.2), |
|
dict( |
|
type='RandomRotate', |
|
angle=[-1, 1], |
|
axis='z', |
|
center=[0, 0, 0], |
|
p=0.5), |
|
dict( |
|
type='RandomRotate', |
|
angle=[-0.015625, 0.015625], |
|
axis='x', |
|
p=0.5), |
|
dict( |
|
type='RandomRotate', |
|
angle=[-0.015625, 0.015625], |
|
axis='y', |
|
p=0.5), |
|
dict(type='RandomScale', scale=[0.9, 1.1]), |
|
dict(type='RandomFlip', p=0.5), |
|
dict(type='RandomJitter', sigma=0.005, clip=0.02), |
|
dict( |
|
type='ElasticDistortion', |
|
distortion_params=[[0.2, 0.4], [0.8, 1.6]]), |
|
dict( |
|
type='ChromaticAutoContrast', p=0.2, |
|
blend_factor=None), |
|
dict(type='ChromaticTranslation', p=0.95, ratio=0.05), |
|
dict(type='ChromaticJitter', p=0.95, std=0.05), |
|
dict( |
|
type='GridSample', |
|
grid_size=0.02, |
|
hash_type='fnv', |
|
mode='train', |
|
return_grid_coord=True), |
|
dict(type='SphereCrop', point_max=102400, mode='random'), |
|
dict(type='CenterShift', apply_z=False), |
|
dict(type='NormalizeColor'), |
|
dict(type='ShufflePoint'), |
|
dict(type='Add', keys_dict=dict(condition='ScanNet')), |
|
dict(type='ToTensor'), |
|
dict( |
|
type='Collect', |
|
keys=('coord', 'grid_coord', 'segment', 'condition'), |
|
feat_keys=('color', 'normal')) |
|
], |
|
test_mode=False, |
|
loop=1) |
|
], |
|
loop=1), |
|
val=dict( |
|
type='ScanNetDataset', |
|
split='val', |
|
data_root='data/scannet', |
|
transform=[ |
|
dict(type='CenterShift', apply_z=True), |
|
dict( |
|
type='GridSample', |
|
grid_size=0.02, |
|
hash_type='fnv', |
|
mode='train', |
|
return_grid_coord=True), |
|
dict(type='CenterShift', apply_z=False), |
|
dict(type='NormalizeColor'), |
|
dict(type='ToTensor'), |
|
dict(type='Add', keys_dict=dict(condition='ScanNet')), |
|
dict( |
|
type='Collect', |
|
keys=('coord', 'grid_coord', 'segment', 'condition'), |
|
feat_keys=('color', 'normal')) |
|
], |
|
test_mode=False), |
|
test=dict( |
|
type='ScanNetDataset', |
|
split='val', |
|
data_root='data/scannet', |
|
transform=[ |
|
dict(type='CenterShift', apply_z=True), |
|
dict(type='NormalizeColor') |
|
], |
|
test_mode=True, |
|
test_cfg=dict( |
|
voxelize=dict( |
|
type='GridSample', |
|
grid_size=0.02, |
|
hash_type='fnv', |
|
mode='test', |
|
keys=('coord', 'color', 'normal'), |
|
return_grid_coord=True), |
|
crop=None, |
|
post_transform=[ |
|
dict(type='CenterShift', apply_z=False), |
|
dict(type='Add', keys_dict=dict(condition='ScanNet')), |
|
dict(type='ToTensor'), |
|
dict( |
|
type='Collect', |
|
keys=('coord', 'grid_coord', 'index', 'condition'), |
|
feat_keys=('color', 'normal')) |
|
], |
|
aug_transform=[[{ |
|
'type': 'RandomRotateTargetAngle', |
|
'angle': [0], |
|
'axis': 'z', |
|
'center': [0, 0, 0], |
|
'p': 1 |
|
}], |
|
[{ |
|
'type': 'RandomRotateTargetAngle', |
|
'angle': [0.5], |
|
'axis': 'z', |
|
'center': [0, 0, 0], |
|
'p': 1 |
|
}], |
|
[{ |
|
'type': 'RandomRotateTargetAngle', |
|
'angle': [1], |
|
'axis': 'z', |
|
'center': [0, 0, 0], |
|
'p': 1 |
|
}], |
|
[{ |
|
'type': 'RandomRotateTargetAngle', |
|
'angle': [1.5], |
|
'axis': 'z', |
|
'center': [0, 0, 0], |
|
'p': 1 |
|
}], |
|
[{ |
|
'type': 'RandomRotateTargetAngle', |
|
'angle': [0], |
|
'axis': 'z', |
|
'center': [0, 0, 0], |
|
'p': 1 |
|
}, { |
|
'type': 'RandomScale', |
|
'scale': [0.95, 0.95] |
|
}], |
|
[{ |
|
'type': 'RandomRotateTargetAngle', |
|
'angle': [0.5], |
|
'axis': 'z', |
|
'center': [0, 0, 0], |
|
'p': 1 |
|
}, { |
|
'type': 'RandomScale', |
|
'scale': [0.95, 0.95] |
|
}], |
|
[{ |
|
'type': 'RandomRotateTargetAngle', |
|
'angle': [1], |
|
'axis': 'z', |
|
'center': [0, 0, 0], |
|
'p': 1 |
|
}, { |
|
'type': 'RandomScale', |
|
'scale': [0.95, 0.95] |
|
}], |
|
[{ |
|
'type': 'RandomRotateTargetAngle', |
|
'angle': [1.5], |
|
'axis': 'z', |
|
'center': [0, 0, 0], |
|
'p': 1 |
|
}, { |
|
'type': 'RandomScale', |
|
'scale': [0.95, 0.95] |
|
}], |
|
[{ |
|
'type': 'RandomRotateTargetAngle', |
|
'angle': [0], |
|
'axis': 'z', |
|
'center': [0, 0, 0], |
|
'p': 1 |
|
}, { |
|
'type': 'RandomScale', |
|
'scale': [1.05, 1.05] |
|
}], |
|
[{ |
|
'type': 'RandomRotateTargetAngle', |
|
'angle': [0.5], |
|
'axis': 'z', |
|
'center': [0, 0, 0], |
|
'p': 1 |
|
}, { |
|
'type': 'RandomScale', |
|
'scale': [1.05, 1.05] |
|
}], |
|
[{ |
|
'type': 'RandomRotateTargetAngle', |
|
'angle': [1], |
|
'axis': 'z', |
|
'center': [0, 0, 0], |
|
'p': 1 |
|
}, { |
|
'type': 'RandomScale', |
|
'scale': [1.05, 1.05] |
|
}], |
|
[{ |
|
'type': 'RandomRotateTargetAngle', |
|
'angle': [1.5], |
|
'axis': 'z', |
|
'center': [0, 0, 0], |
|
'p': 1 |
|
}, { |
|
'type': 'RandomScale', |
|
'scale': [1.05, 1.05] |
|
}], [{ |
|
'type': 'RandomFlip', |
|
'p': 1 |
|
}]]))) |
|
|