SOLAR-tail-10.7B-instruct-v1.0
Model Details
Model Developers Kyujin Han (kyujinpy)
Method
Instruction-tuning with PracticeLLM/SOLAR-tail-10.7B-Merge-v1.0.
Datasets
datasets: kyujinpy/KOR-OpenOrca-Platypus-v3.
Hyperparameters
python finetune.py \
--base_model PracticeLLM/SOLAR-tail-10.7B-Merge-v1.0 \
--data-path kyujinpy/KOR-OpenOrca-Platypus-v3 \
--output_dir ./SOLAR-tail-10.7B-instruct \
--batch_size 64 \
--micro_batch_size 1 \
--num_epochs 1 \
--learning_rate 3e-5 \
--cutoff_len 4096 \
--val_set_size 0 \
--lora_r 16 \
--lora_alpha 16 \
--lora_dropout 0.05 \
--lora_target_modules '[q_proj, k_proj, v_proj, o_proj, gate_proj, down_proj, up_proj, lm_head]' \
--train_on_inputs False \
--add_eos_token False \
--group_by_length False \
--prompt_template_name user_prompt \
--lr_scheduler 'cosine' \
Platypus repo.
Model Benchmark
Open leaderboard
- Follow up as link.
Model | Average | ARC | HellaSwag | MMLU | TruthfulQA | Ko-CommonGenV2 |
---|---|---|---|---|---|---|
PracticeLLM/SOLAR-tail-10.7B-instruct-v1.0 | 51.70 | 46.93 | 58.19 | 53.15 | 46.52 | 53.72 |
PracticeLLM/SOLAR-tail-10.7B-Merge-v1.0 | 48.32 | 45.73 | 56.97 | 38.77 | 38.75 | 61.16 |
jjourney1125/M-SOLAR-10.7B-v1.0 | 55.15 | 49.57 | 60.12 | 54.60 | 49.23 | 62.22 |
Implementation Code
### KO-Platypus
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
repo = "PracticeLLM/SOLAR-tail-10.7B-instruct-v1.0"
OpenOrca = AutoModelForCausalLM.from_pretrained(
repo,
return_dict=True,
torch_dtype=torch.float16,
device_map='auto'
)
OpenOrca_tokenizer = AutoTokenizer.from_pretrained(repo)
- Downloads last month
- 1,309
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.