|
--- |
|
license: mit |
|
tags: |
|
- Text Generation |
|
- medical |
|
- GPT-neo-1.3B |
|
- PyTorch |
|
- LLM |
|
- Finetuned |
|
--- |
|
LoRA +Finetuned with 50 pairs of GPT-3.5-turbo generated workout QA pair on T4 Google Collab using GPT-neo-1.3B base model. |
|
Finetuned on synthetic data. |
|
|
|
Collab Link https://colab.research.google.com/drive/12uv_PocrcDmvOhjPD9SGAqcXbpZAZh2a?authuser=2#scrollTo=PNcc7C51VWHV |
|
|
|
# How to use the model |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("Prajna1999/Prajna-gpt-neo-1.3B-fitbot") |
|
model = AutoModelForCausalLM.from_pretrained("Prajna1999/Prajna-gpt-neo-1.3B-fitbot") |
|
|
|
input_ids = tokenizer.encode("Suggest some workouts for weight loss", return_tensors="pt") |
|
output = model.generate(input_ids, max_length=128, |
|
temperature=0, top_p=0.7, top_k=2) |
|
output_text = tokenizer.decode(output[0], skip_special_tokens=True) |
|
|
|
print(output_text) |