|
--- |
|
language: |
|
- en |
|
license: other |
|
library_name: transformers |
|
tags: |
|
- peft |
|
- unsloth |
|
- lora |
|
- trl |
|
- sft |
|
datasets: |
|
- HuggingFaceH4/CodeAlpaca_20K |
|
license_name: gemma-terms-of-use |
|
license_link: https://ai.google.dev/gemma/terms |
|
|
|
inference: false |
|
--- |
|
|
|
# Code-Gemma-2B |
|
|
|
### Description |
|
Code-Gemma was finetuned (1k steps) on the CodeAlpaca-20k dataset using the unsloth library to enhance the Gemma-2B-it model. |
|
|
|
### Usage |
|
|
|
Below we share some code snippets on how to get quickly started with running the model. |
|
|
|
```python |
|
!pip install "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git" |
|
if major_version >= 8: |
|
# Use this for new GPUs like Ampere, Hopper GPUs (RTX 30xx, RTX 40xx, A100, H100, L40) |
|
!pip install --no-deps packaging ninja einops flash-attn xformers trl peft accelerate bitsandbytes |
|
else: |
|
# Use this for older GPUs (V100, Tesla T4, RTX 20xx) |
|
!pip install --no-deps xformers trl peft accelerate bitsandbytes |
|
pass |
|
``` |
|
|
|
#### Running the model on a GPU using different precisions |
|
|
|
* _Using `torch.float16`_ |
|
|
|
```python |
|
|
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("Praneeth/code-gemma-2b-it") |
|
model = AutoModelForCausalLM.from_pretrained("Praneeth/code-gemma-2b-it", device_map="auto", torch_dtype=torch.float16) |
|
|
|
input_text = "Write me a poem about Machine Learning." |
|
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda") |
|
|
|
outputs = model.generate(**input_ids, max_new_tokens=256,) |
|
print(tokenizer.decode(outputs[0])) |
|
``` |
|
|
|
|