CrossEncoder based on jinaai/jina-reranker-v2-base-multilingual
This is a Cross Encoder model finetuned from jinaai/jina-reranker-v2-base-multilingual using the sentence-transformers library. It computes scores for pairs of texts, which can be used for text reranking and semantic search.
Model Details
Model Description
- Model Type: Cross Encoder
- Base model: jinaai/jina-reranker-v2-base-multilingual
- Maximum Sequence Length: 1024 tokens
- Number of Output Labels: 1 label
Model Sources
- Documentation: Sentence Transformers Documentation
- Documentation: Cross Encoder Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Cross Encoders on Hugging Face
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import CrossEncoder
# Download from the 🤗 Hub
model = CrossEncoder("Pranjal2002/jina_finance_v2")
# Get scores for pairs of texts
pairs = [
['What consolidation trends among competitors are highlighted in disclosures affecting Regions Financial Corporation’s regional banking operations?', '10-K'],
['What consolidation trends among competitors are highlighted in disclosures affecting Regions Financial Corporation’s regional banking operations?', 'Earnings'],
['What consolidation trends among competitors are highlighted in disclosures affecting Regions Financial Corporation’s regional banking operations?', 'DEF14A'],
['What consolidation trends among competitors are highlighted in disclosures affecting Regions Financial Corporation’s regional banking operations?', '8-K'],
['What consolidation trends among competitors are highlighted in disclosures affecting Regions Financial Corporation’s regional banking operations?', '10-Q'],
]
scores = model.predict(pairs)
print(scores.shape)
# (5,)
# Or rank different texts based on similarity to a single text
ranks = model.rank(
'What consolidation trends among competitors are highlighted in disclosures affecting Regions Financial Corporation’s regional banking operations?',
[
'10-K',
'Earnings',
'DEF14A',
'8-K',
'10-Q',
]
)
# [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...]
Training Details
Training Dataset
Unnamed Dataset
- Size: 3,190 training samples
- Columns:
query
,docs
, andlabels
- Approximate statistics based on the first 1000 samples:
query docs labels type string list list details - min: 55 characters
- mean: 103.12 characters
- max: 180 characters
- size: 5 elements
- size: 5 elements
- Samples:
query docs labels What year over year growth rate was shown for paid memberships in the same table
['10-Q', '10-K', '8-K', 'Earnings', 'DEF14A']
[4, 3, 2, 1, 0]
How did non‑GAAP EPS growth align with the incentive metrics set for management?
['DEF14A', '8-K', '10-K', '10-Q', 'Earnings']
[2, 1, 0, 0, 0]
What questions were raised regarding Xcel Energy Inc.’s risk factors and mitigation plans related to the integration of renewable energy sources into their grid?
['10-K', 'Earnings', '8-K', '10-Q', 'DEF14A']
[4, 3, 2, 1, 0]
- Loss:
ListNetLoss
with these parameters:{ "activation_fn": "torch.nn.modules.linear.Identity", "mini_batch_size": null }
Evaluation Dataset
Unnamed Dataset
- Size: 798 evaluation samples
- Columns:
query
,docs
, andlabels
- Approximate statistics based on the first 798 samples:
query docs labels type string list list details - min: 53 characters
- mean: 102.91 characters
- max: 179 characters
- size: 5 elements
- size: 5 elements
- Samples:
query docs labels What consolidation trends among competitors are highlighted in disclosures affecting Regions Financial Corporation’s regional banking operations?
['10-K', 'Earnings', 'DEF14A', '8-K', '10-Q']
[4, 3, 2, 1, 0]
How does Pentair manage equity award burn rate or share pool availability?
['10-K', 'DEF14A', '10-Q', 'Earnings', '8-K']
[4, 3, 2, 1, 0]
What key takeaways emerged from Valero Energy Corporation’s most recent earnings announcement?
['10-Q', '10-K', 'Earnings', '8-K', 'DEF14A']
[4, 3, 2, 1, 0]
- Loss:
ListNetLoss
with these parameters:{ "activation_fn": "torch.nn.modules.linear.Identity", "mini_batch_size": null }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 4per_device_eval_batch_size
: 4gradient_accumulation_steps
: 2learning_rate
: 2e-05num_train_epochs
: 5warmup_steps
: 100bf16
: Trueload_best_model_at_end
: Trueoptim
: adamw_torch
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 4per_device_eval_batch_size
: 4per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 2eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 5max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 100log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}parallelism_config
: Nonedeepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsehub_revision
: Nonegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseliger_kernel_config
: Noneeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportionalrouter_mapping
: {}learning_rate_mapping
: {}
Training Logs
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.1253 | 50 | 1.7131 | - |
0.2506 | 100 | 1.5888 | - |
0.3759 | 150 | 1.49 | - |
0.5013 | 200 | 1.4408 | 1.4397 |
0.6266 | 250 | 1.4225 | - |
0.7519 | 300 | 1.4216 | - |
0.8772 | 350 | 1.4329 | - |
1.0025 | 400 | 1.3996 | 1.4083 |
1.1278 | 450 | 1.4126 | - |
1.2531 | 500 | 1.4002 | - |
1.3784 | 550 | 1.4098 | - |
1.5038 | 600 | 1.3692 | 1.4042 |
1.6291 | 650 | 1.3784 | - |
1.7544 | 700 | 1.4014 | - |
1.8797 | 750 | 1.3815 | - |
2.0050 | 800 | 1.3982 | 1.3910 |
2.1303 | 850 | 1.3864 | - |
2.2556 | 900 | 1.3983 | - |
2.3810 | 950 | 1.3662 | - |
2.5063 | 1000 | 1.3747 | 1.3968 |
2.6316 | 1050 | 1.3739 | - |
2.7569 | 1100 | 1.3687 | - |
2.8822 | 1150 | 1.3858 | - |
3.0075 | 1200 | 1.3847 | 1.3897 |
3.1328 | 1250 | 1.3684 | - |
3.2581 | 1300 | 1.3787 | - |
3.3835 | 1350 | 1.3612 | - |
3.5088 | 1400 | 1.3906 | 1.3920 |
3.6341 | 1450 | 1.3838 | - |
3.7594 | 1500 | 1.3817 | - |
3.8847 | 1550 | 1.3615 | - |
4.01 | 1600 | 1.3978 | 1.3892 |
4.1353 | 1650 | 1.3793 | - |
4.2607 | 1700 | 1.3753 | - |
4.3860 | 1750 | 1.3847 | - |
4.5113 | 1800 | 1.3857 | 1.3887 |
4.6366 | 1850 | 1.3583 | - |
4.7619 | 1900 | 1.3644 | - |
4.8872 | 1950 | 1.3696 | - |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.12.11
- Sentence Transformers: 5.1.0
- Transformers: 4.56.1
- PyTorch: 2.8.0+cu126
- Accelerate: 1.10.1
- Datasets: 4.0.0
- Tokenizers: 0.22.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
ListNetLoss
@inproceedings{cao2007learning,
title={Learning to Rank: From Pairwise Approach to Listwise Approach},
author={Cao, Zhe and Qin, Tao and Liu, Tie-Yan and Tsai, Ming-Feng and Li, Hang},
booktitle={Proceedings of the 24th international conference on Machine learning},
pages={129--136},
year={2007}
}
- Downloads last month
- 5
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for Pranjal2002/jina_finance_v2
Base model
jinaai/jina-reranker-v2-base-multilingual