email-spam-classifier-new
import streamlit as st
import pickle
import string
import pickle
from nltk.corpus import stopwords
import nltk
from nltk.stem.porter import PorterStemmer
nltk.download('stopwords')
nltk.download('punkt')
ps = PorterStemmer()
def transform_text(text):
text = text.lower()
text = nltk.word_tokenize(text)
y = []
for i in text:
if i.isalnum():
y.append(i)
text = y[:]
y.clear()
for i in text:
if i not in stopwords.words('english') and i not in string.punctuation:
y.append(i)
text = y[:]
y.clear()
for i in text:
y.append(ps.stem(i))
return " ".join(y)
tfidf = pickle.load(open('vectorizer.pkl','rb'))
model = pickle.load(open('model.pkl','rb'))
st.title("Email/SMS Spam Classifier")
input_sms = st.text_area("Enter the message")
if st.button('Predict'):
transformed_sms = transform_text(input_sms)
vector_input = tfidf.transform([transformed_sms])
result = model.predict(vector_input)[0]
if result == 1:
st.header("Spam")
else:
st.header("Not Spam")
(back to top)