Pravesh390's picture
Upload README.md with huggingface_hub
a76f16d verified
metadata
license: apache-2.0
datasets:
  - Pravesh390/country-capital-mixed
language:
  - en
library_name: transformers
pipeline_tag: text2text-generation
tags:
  - qlora
  - flan-t5
  - prompt-tuning
  - question-answering
  - hallucination
  - robust-qa
  - country-capital
model-index:
  - name: flan-t5-qlora-countryqa-v1
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          type: Pravesh390/country-capital-mixed
          name: Country-Capital Mixed QA
        metrics:
          - type: bleu
            value: 92.5
          - type: rouge
            value: 87.3

🧠 FLAN-T5 QLoRA (Prompt Tuned) - Country Capital QA

This model is a fine-tuned version of google/flan-t5-base using QLoRA and Prompt Tuning on a hybrid QA dataset.

πŸ“Œ Highlights

  • πŸ” Correct & incorrect (hallucinated) QA pairs
  • βš™οΈ Trained using 4-bit QLoRA with PEFT
  • πŸ”§ Prompt tuning enables parameter-efficient adaptation

πŸ—οΈ Training

  • Base Model: google/flan-t5-base
  • Method: QLoRA + Prompt Tuning with PEFT
  • Quantization: 4-bit NF4
  • Frameworks: πŸ€— Transformers, PEFT, Accelerate
  • Evaluation: BLEU = 92.5, ROUGE = 87.3

πŸ“š Dataset

Mixture of 20 correct and 3 incorrect QA samples from Pravesh390/country-capital-mixed.

πŸ“¦ Usage

from transformers import pipeline
pipe = pipeline("text2text-generation", model="Pravesh390/flan-t5-qlora-countryqa-v1")
pipe("What is the capital of Brazil?")

πŸ“ˆ Intended Use

  • Evaluate hallucinations in QA systems
  • Robust model development for real-world QA
  • Academic research or education

🏷️ License

Apache 2.0 β€” Free for research and commercial use.