|
--- |
|
license: apache-2.0 |
|
--- |
|
|
|
# Model description |
|
|
|
This is an [mt5-base](https://huggingface.co/google/mt5-base) model, finetuned to generate questions using [TyDi QA](https://huggingface.co/datasets/tydiqa) dataset. It was trained to take the context and answer as input to generate questions. |
|
|
|
# Overview |
|
|
|
*Language model*: mT5-base \ |
|
*Language*: Arabic, Bengali, English, Finnish, Indonesian, Korean, Russian, Swahili, Telugu \ |
|
*Task*: Question Generation \ |
|
*Data*: TyDi QA |
|
|
|
# Intented use and limitations |
|
One can use this model to generate questions. Biases associated with pre-training of mT5 and TyDiQA dataset may be present. |
|
|
|
## Usage |
|
One can use this model directly in the [PrimeQA](https://github.com/primeqa/primeqa) framework as in this example [notebook](https://github.com/primeqa/primeqa/blob/main/notebooks/qg/tableqg_inference.ipynb). |
|
|
|
Or |
|
```python |
|
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM |
|
tokenizer = AutoTokenizer.from_pretrained("PrimeQA/mt5-base-tydi-question-generator") |
|
model = AutoModelForSeq2SeqLM.from_pretrained("PrimeQA/mt5-base-tydi-question-generator") |
|
|
|
def get_question(answer, context, max_length=64): |
|
input_text = answer +" <<sep>> " + context |
|
features = tokenizer([input_text], return_tensors='pt') |
|
output = model.generate(input_ids=features['input_ids'], |
|
attention_mask=features['attention_mask'], |
|
max_length=max_length) |
|
return tokenizer.decode(output[0]) |
|
context = "শচীন টেন্ডুলকারকে ক্রিকেট ইতিহাসের অন্যতম সেরা ব্যাটসম্যান হিসেবে গণ্য করা হয়।" |
|
answer = "শচীন টেন্ডুলকার" |
|
get_question(answer, context) |
|
# output: ক্রিকেট ইতিহাসের অন্যতম সেরা ব্যাটসম্যান কে? |
|
``` |
|
|
|
## Citation |
|
```bibtex |
|
@inproceedings{xue2021mt5, |
|
title={mT5: A Massively Multilingual Pre-trained Text-to-Text Transformer}, |
|
author={Xue, Linting and Constant, Noah and Roberts, Adam and |
|
Kale, Mihir and Al-Rfou, Rami and Siddhant, Aditya and |
|
Barua, Aditya and Raffel, Colin}, |
|
booktitle={Proceedings of the 2021 Conference of the North American |
|
Chapter of the Association for Computational Linguistics: |
|
Human Language Technologies}, |
|
pages={483--498}, |
|
year={2021} |
|
} |
|
``` |
|
|
|
|