QuantFactory/Llama-3-8B-Magpie-Pro-SFT-100K-v0.1-GGUF

This is quantized version of Magpie-Align/Llama-3-8B-Magpie-Pro-SFT-100K-v0.1 created suing llama.cpp

Model Description

Project Web: https://magpie-align.github.io/

Arxiv Technical Report: https://arxiv.org/abs/2406.08464

Codes: https://github.com/magpie-align/magpie

About This Model

This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B on First 100K data of Magpie-Align/Magpie-Pro-300K-Filtered dataset.

Please use Magpie-Align/Llama-3-8B-Magpie-Pro-SFT-v0.1 with better performance.

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 32
  • total_eval_batch_size: 4
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss
0.8869 0.0036 1 0.9139
0.5854 0.3344 92 0.6158
0.5218 0.6688 184 0.5455
0.4878 1.0032 276 0.5125
0.3734 1.3226 368 0.5091
0.3647 1.6570 460 0.5056

Framework versions

  • Transformers 4.40.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1

Built with Axolotl

See axolotl config

axolotl version: 0.4.0

base_model: meta-llama/Meta-Llama-3-8B
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer

load_in_8bit: false
load_in_4bit: false
strict: false

datasets:
  - path: Magpie-Align/Magpie-Pro-300K-Filtered-First100K
    type: sharegpt
    conversation: llama3
dataset_prepared_path: last_run_prepared
val_set_size: 0.001
output_dir: ./out_Llama-3-8B-Magpie-Pro-100K-FilteredL

sequence_len: 8192
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true

gradient_accumulation_steps: 8
micro_batch_size: 1
num_epochs: 2
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 2e-5

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
gradient_checkpointing_kwargs:
  use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_steps: 100
evals_per_epoch: 3
eval_table_size:
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
  pad_token: <|end_of_text|>

Downloads last month
45
GGUF
Model size
8.03B params
Architecture
llama

2-bit

3-bit

4-bit

5-bit

6-bit

8-bit

Inference Examples
Unable to determine this model's library. Check the docs .

Model tree for QuantFactory/Llama-3-8B-Magpie-Pro-SFT-100K-v0.1-GGUF