|
|
|
--- |
|
|
|
library_name: transformers |
|
license: apache-2.0 |
|
base_model: Qwen/Qwen2.5-7B |
|
datasets: |
|
- allenai/tulu-3-sft-mixture |
|
|
|
--- |
|
|
|
[![QuantFactory Banner](https://lh7-rt.googleusercontent.com/docsz/AD_4nXeiuCm7c8lEwEJuRey9kiVZsRn2W-b4pWlu3-X534V3YmVuVc2ZL-NXg2RkzSOOS2JXGHutDuyyNAUtdJI65jGTo8jT9Y99tMi4H4MqL44Uc5QKG77B0d6-JfIkZHFaUA71-RtjyYZWVIhqsNZcx8-OMaA?key=xt3VSDoCbmTY7o-cwwOFwQ)](https://hf.co/QuantFactory) |
|
|
|
|
|
# QuantFactory/Teleut-7b-GGUF |
|
This is quantized version of [allura-org/Teleut-7b](https://huggingface.co/allura-org/Teleut-7b) created using llama.cpp |
|
|
|
# Original Model Card |
|
|
|
|
|
# Teleut 7b |
|
|
|
![image/png](https://cdn-uploads.huggingface.co/production/uploads/634262af8d8089ebaefd410e/UqIi8eztdptvt52Mak_1K.png) |
|
|
|
A replication attempt of Tulu 3 on the Qwen 2.5 base models. |
|
|
|
## Evals (so far) |
|
| | Teleut 7B (measured) | Tülu 3 SFT 8B (reported) | Qwen 2.5 7B Instruct (reported) | Ministral 8B (reported) | Mistral 7B v0.3 (reported) |
|
|-------------------------|----------------------|--------------------------|---------------------------------|-------------------------|--------------------------- |
|
|BBH (3 shot, CoT) |*64.4%* |**67.9%** |21.7% |56.2% |47.0%<sup>NLL</sup> |
|
|GSM8K (8 shot, CoT) |78.5% |76.2% |**83.8%** |*80.0%* |xx.x% |
|
|IFEval (prompt loose) |66.3% |*72.8%* |**74.7%** |56.4% |53.0% |
|
|MMLU (0 shot, CoT) |*73.2%* |65.9% |**76.6%** |68.5% |30.7%<sup>5-shot</sup> |
|
|MMLU Pro (0 shot, CoT) |*48.3%* |44.3% |**56.3%**<sup>Unknown</sup> |32.9%<sup>5-shot</sup> |30.7%<sup>5-shot</sup> |
|
|PopQA (15 shot) |18.9% |**29.3%** |18.1% |*20.2%* |xx.x% |
|
|TruthfulQA |47.2% |46.8% |**63.1%** |*55.5%* |xx.x% |
|
|
|
## Credits |
|
Big thanks to Retis Labs for being providing my 8xH100 polycule used to train and test this model! |
|
Another big thanks to AllenAI for publishing the Tülu 3 data and model series (as well as the paper and details on training), as well as Alibaba for training the original Qwen 2.5 base model series! |
|
|
|
``` |
|
@article{lambert2024tulu3, |
|
title = {Tülu 3: Pushing Frontiers in Open Language Model Post-Training}, |
|
author = { |
|
Nathan Lambert and |
|
Jacob Morrison and |
|
Valentina Pyatkin and |
|
Shengyi Huang and |
|
Hamish Ivison and |
|
Faeze Brahman and |
|
Lester James V. Miranda and |
|
Alisa Liu and |
|
Nouha Dziri and |
|
Shane Lyu and |
|
Yuling Gu and |
|
Saumya Malik and |
|
Victoria Graf and |
|
Jena D. Hwang and |
|
Jiangjiang Yang and |
|
Ronan Le Bras and |
|
Oyvind Tafjord and |
|
Chris Wilhelm and |
|
Luca Soldaini and |
|
Noah A. Smith and |
|
Yizhong Wang and |
|
Pradeep Dasigi and |
|
Hannaneh Hajishirzi |
|
}, |
|
year = {2024}, |
|
email = {tulu@allenai.org} |
|
} |
|
``` |
|
|
|
## Training procedure |
|
|
|
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 3.5e-06 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- num_devices: 8 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 128 |
|
- total_eval_batch_size: 64 |
|
- optimizer: Use paged_ademamix_8bit and the args are: |
|
No additional optimizer arguments |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_steps: 370 |
|
- num_epochs: 1 |
|
|
|
### Framework versions |
|
|
|
- Transformers 4.46.3 |
|
- Pytorch 2.5.1+cu124 |
|
- Datasets 3.1.0 |
|
- Tokenizers 0.20.3 |
|
|
|
### Configuration |
|
<details><summary>See axolotl config</summary> |
|
|
|
axolotl version: `0.5.2` |
|
```yaml |
|
base_model: Qwen/Qwen2.5-7B |
|
|
|
plugins: |
|
- axolotl.integrations.liger.LigerPlugin |
|
liger_rope: true |
|
liger_rms_norm: true |
|
liger_glu_activation: true |
|
liger_fused_linear_cross_entropy: true |
|
|
|
strict: false |
|
|
|
chat_template: chatml |
|
datasets: |
|
- path: allenai/tulu-3-sft-mixture |
|
type: chat_template |
|
split: train |
|
field_messages: messages |
|
|
|
dataset_prepared_path: last_run_prepared |
|
#val_set_size: 0.02 |
|
output_dir: ./ckpts |
|
|
|
sequence_len: 8192 |
|
#sample_packing: true |
|
pad_to_sequence_len: true |
|
|
|
wandb_project: qwen-2.5-7b-sft |
|
wandb_entity: |
|
wandb_watch: |
|
wandb_name: |
|
wandb_log_model: |
|
|
|
gradient_accumulation_steps: 2 |
|
micro_batch_size: 8 |
|
num_epochs: 1 |
|
optimizer: paged_ademamix_8bit |
|
lr_scheduler: cosine |
|
learning_rate: 3.5e-6 |
|
|
|
train_on_inputs: false |
|
group_by_length: false |
|
bf16: auto |
|
fp16: |
|
tf32: false |
|
|
|
gradient_checkpointing: true |
|
gradient_checkpointing_kwargs: |
|
use_reentrant: false |
|
early_stopping_patience: |
|
resume_from_checkpoint: |
|
logging_steps: 1 |
|
xformers_attention: |
|
flash_attention: true |
|
|
|
deepspeed: deepspeed_configs/zero3_bf16.json |
|
|
|
warmup_steps: 370 |
|
#evals_per_epoch: 4 |
|
eval_table_size: |
|
saves_per_epoch: 2 |
|
debug: |
|
weight_decay: 0.0 |
|
|
|
``` |
|
|
|
</details><br> |
|
|