metadata
language: ru
datasets:
- mozilla-foundation/common_voice_8_0
metrics:
- wer
- cer
tags:
- audio
- automatic-speech-recognition
- generated_from_trainer
- hf-asr-leaderboard
- mozilla-foundation/common_voice_8_0
- robust-speech-event
- speech
model-index:
- name: XLS-R 1B Wav2Vec2 Russian by Rasmus Toivanen
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 8
type: mozilla-foundation/common_voice_8_0
args: ru
metrics:
- name: Test WER
type: wer
value: 10.83
- name: Test CER
type: cer
value: 2.41
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Robust Speech Event - Dev Data
type: speech-recognition-community-v2/dev_data
args: ru
metrics:
- name: Test WER
type: wer
value: 37.71
- name: Test CER
type: cer
value: 12.98
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Robust Speech Event - Test Data
type: speech-recognition-community-v2/eval_data
args: ru
metrics:
- name: Test WER
type: wer
value: 31.89
wav2vec2-xlsr-1b-ru
This model is a fine-tuned version of facebook/wav2vec2-xls-r-1b on the common_voice dataset. It achieves the following results on the evaluation set:
- Loss: 0.1352
- Wer: 0.0971
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.5462 | 0.35 | 500 | 0.4027 | 0.3575 |
0.498 | 0.69 | 1000 | 0.2588 | 0.2513 |
0.4279 | 1.04 | 1500 | 0.2265 | 0.2204 |
0.4099 | 1.38 | 2000 | 0.2189 | 0.1979 |
0.4688 | 1.73 | 2500 | 0.2100 | 0.1920 |
0.2241 | 2.07 | 3000 | 0.1980 | 0.1767 |
0.2056 | 2.42 | 3500 | 0.2020 | 0.1683 |
0.3423 | 2.76 | 4000 | 0.1862 | 0.1606 |
0.2478 | 3.11 | 4500 | 0.1787 | 0.1563 |
0.3079 | 3.45 | 5000 | 0.1759 | 0.1555 |
0.2477 | 3.8 | 5500 | 0.1713 | 0.1423 |
0.1718 | 4.14 | 6000 | 0.1695 | 0.1391 |
0.1675 | 4.49 | 6500 | 0.1677 | 0.1372 |
0.1631 | 4.83 | 7000 | 0.1652 | 0.1333 |
0.1429 | 5.18 | 7500 | 0.1605 | 0.1308 |
0.1505 | 5.52 | 8000 | 0.1612 | 0.1245 |
0.1385 | 5.87 | 8500 | 0.1487 | 0.1225 |
0.1285 | 6.22 | 9000 | 0.1526 | 0.1201 |
0.1153 | 6.56 | 9500 | 0.1464 | 0.1172 |
0.1159 | 6.91 | 10000 | 0.1505 | 0.1143 |
0.1061 | 7.25 | 10500 | 0.1444 | 0.1106 |
0.1016 | 7.6 | 11000 | 0.1427 | 0.1075 |
0.1125 | 7.94 | 11500 | 0.1386 | 0.1045 |
0.0937 | 8.29 | 12000 | 0.1403 | 0.1022 |
0.1059 | 8.63 | 12500 | 0.1406 | 0.1022 |
0.0857 | 8.98 | 13000 | 0.1372 | 0.0992 |
0.0901 | 9.32 | 13500 | 0.1380 | 0.0977 |
0.0913 | 9.67 | 14000 | 0.1352 | 0.0971 |
Framework versions
- Transformers 4.17.0.dev0
- Pytorch 1.10.2+cu102
- Datasets 1.18.3
- Tokenizers 0.11.0