|
--- |
|
base_model: llm-jp/llm-jp-3-13b |
|
tags: |
|
- text-generation-inference |
|
- transformers |
|
- unsloth |
|
- llama |
|
- trl |
|
license: |
|
- apache-2.0 |
|
- cc-by-sa-4.0 |
|
language: |
|
- en |
|
--- |
|
# Uploaded model |
|
|
|
- **Developed by:** RAYU555 |
|
- **License:** apache-2.0 cc-by-sa-4.0 |
|
- **Finetuned from model :** llm-jp/llm-jp-3-13b |
|
|
|
# 出力方法 |
|
|
|
下記のコードを上から実行してください。 |
|
|
|
(使用ライブラリなどは適宜自身のpcにあったバージョンの物などをインストールしてから実行してください) |
|
|
|
``` |
|
""" |
|
本リポジトリのモデルを読み込んでから実行してください |
|
""" |
|
|
|
import json |
|
datasets = [] |
|
with open("./elyza-tasks-100-TV_0.jsonl", "r") as f: |
|
item = "" |
|
for line in f: |
|
line = line.strip() |
|
item += line |
|
if item.endswith("}"): |
|
datasets.append(json.loads(item)) |
|
item = "" |
|
|
|
# 学習したモデルを用いてタスクを実行 |
|
from tqdm import tqdm |
|
|
|
results = [] |
|
for dt in tqdm(datasets): |
|
input = dt["input"] |
|
|
|
prompt = f"""### 指示\n{input}\n### 回答\n""" |
|
|
|
inputs = tokenizer([prompt], return_tensors = "pt").to(model.device) |
|
|
|
outputs = model.generate(**inputs, max_new_tokens = 512, use_cache = True, do_sample=False, repetition_penalty=1.2) |
|
prediction = tokenizer.decode(outputs[0], skip_special_tokens=True).split('\n### 回答')[-1] |
|
|
|
results.append({"task_id": dt["task_id"], "input": input, "output": prediction}) |
|
|
|
``` |
|
|
|
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. |
|
|
|
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth) |
|
|
|
|
|
Used [ELYZA-tasks-100](https://huggingface.co/datasets/elyza/ELYZA-tasks-100) for fineturning. |
|
|
|
|
|
ELYZA-tasks-100: 日本語instructionモデル評価データセット © 2023 Akira Sasaki and Masato Hirakawa and Shintaro Horie and Tomoaki Nakamura ([CC BY-SA 4.0](https://creativecommons.org/licenses/by-sa/4.0/) |
|
) |
|
|