Danish-Bert-GoÆmotion
Danish Go-Emotions classifier. Maltehb/danish-bert-botxo (uncased) finetuned on a translation of the go_emotions dataset using Helsinki-NLP/opus-mt-en-da. Thus, performance is obviousely dependent on the translation model.
Training
- Translating the training data with MT: Notebook
- Fine-tuning danish-bert-botxo: coming soon...
Training Parameters:
Num examples = 189900
Num Epochs = 3
Train batch = 8
Eval batch = 8
Learning Rate = 3e-5
Warmup steps = 4273
Total optimization steps = 71125
Loss
Training loss
Eval. loss
0.1178 (21100 examples)
Using the model with transformers
Easiest use with transformers
and pipeline
:
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
model = AutoModelForSequenceClassification.from_pretrained('RJuro/Da-HyggeBERT')
tokenizer = AutoTokenizer.from_pretrained('RJuro/Da-HyggeBERT')
classifier = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer)
classifier('jeg elsker dig')
[{'label': 'kærlighed', 'score': 0.9634820818901062}]
Using the model with simpletransformers
from simpletransformers.classification import MultiLabelClassificationModel
model = MultiLabelClassificationModel('bert', 'RJuro/Da-HyggeBERT')
predictions, raw_outputs = model.predict(df['text'])
- Downloads last month
- 110
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.