Edit model card

flan-t5-base-finetuned-QLoRA-10000

This model is a fine-tuned version of google/flan-t5-base on the cnn_dailymail dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0625
  • Rouge1: 0.2397
  • Rouge2: 0.1107
  • Rougel: 0.1948
  • Rougelsum: 0.226

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum
1.3695 1.0 1250 1.1374 0.232 0.1046 0.1884 0.218
1.197 2.0 2500 1.0885 0.2371 0.1093 0.1934 0.2236
1.1489 3.0 3750 1.0765 0.2389 0.1098 0.1939 0.2248
1.156 4.0 5000 1.0693 0.2403 0.1107 0.195 0.226
1.1135 5.0 6250 1.0663 0.2393 0.1102 0.1944 0.2252
1.1607 6.0 7500 1.0648 0.24 0.1109 0.1951 0.2259
1.1222 7.0 8750 1.0635 0.2398 0.1106 0.1947 0.2256
1.1619 8.0 10000 1.0629 0.2399 0.1106 0.1949 0.2259
1.1366 9.0 11250 1.0626 0.2397 0.1108 0.1948 0.226
1.2062 10.0 12500 1.0625 0.2397 0.1107 0.1948 0.226

Framework versions

  • PEFT 0.8.2
  • Transformers 4.37.0
  • Pytorch 2.1.2
  • Datasets 2.1.0
  • Tokenizers 0.15.1
Downloads last month
3
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for RMWeerasinghe/flan-t5-base-finetuned-QLoRA-10000

Adapter
(131)
this model

Dataset used to train RMWeerasinghe/flan-t5-base-finetuned-QLoRA-10000