fixed tokenizer for rwkv_6_v2.1
#2
by
SupYumm
- opened
- rwkv_vocab_v20230424.txt +0 -0
- hf_rwkv_tokenizer.py → tokenization_rwkv5.py +103 -153
- tokenizer_config.json +3 -3
- vocab.txt +0 -0
rwkv_vocab_v20230424.txt
DELETED
The diff for this file is too large to render.
See raw diff
|
|
hf_rwkv_tokenizer.py → tokenization_rwkv5.py
RENAMED
@@ -12,7 +12,7 @@
|
|
12 |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
# See the License for the specific language governing permissions and
|
14 |
# limitations under the License.
|
15 |
-
"""Tokenization classes for
|
16 |
|
17 |
import os
|
18 |
import re
|
@@ -27,147 +27,107 @@ if TYPE_CHECKING:
|
|
27 |
|
28 |
logger = logging.get_logger(__name__)
|
29 |
|
30 |
-
|
31 |
VOCAB_FILES_NAMES = {
|
32 |
-
"vocab_file": "
|
|
|
|
|
|
|
|
|
|
|
33 |
}
|
34 |
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
self.root = TRIE()
|
102 |
-
for t, i in self.token2idx.items():
|
103 |
-
_ = self.root.add(t, val=(t, i))
|
104 |
-
|
105 |
-
def encodeBytes(self, src: bytes):
|
106 |
-
idx: int = 0
|
107 |
-
tokens = []
|
108 |
-
while idx < len(src):
|
109 |
-
_idx: int = idx
|
110 |
-
idx, _, values = self.root.find_longest(src, idx)
|
111 |
-
assert idx != _idx
|
112 |
-
_, token = next(iter(values))
|
113 |
-
tokens.append(token)
|
114 |
-
return tokens
|
115 |
-
|
116 |
-
def decodeBytes(self, tokens):
|
117 |
-
return b"".join(map(lambda i: self.idx2token[i], tokens))
|
118 |
-
|
119 |
-
def encode(self, src):
|
120 |
-
if isinstance(src, str):
|
121 |
-
return [self.encodeBytes(src.encode("utf-8"))]
|
122 |
-
elif isinstance(src, list):
|
123 |
-
return [self.encodeBytes(s.encode("utf-8")) for s in src]
|
124 |
-
|
125 |
-
def decode(self, tokens):
|
126 |
-
return [self.decodeBytes(batch).decode("utf-8") for batch in tokens]
|
127 |
-
# try:
|
128 |
-
# return self.decodeBytes(tokens).decode('utf-8')
|
129 |
-
# except:
|
130 |
-
# return '\ufffd' # bad utf-8
|
131 |
-
|
132 |
-
def printTokens(self, tokens):
|
133 |
-
for i in tokens:
|
134 |
-
s = self.idx2token[i]
|
135 |
-
try:
|
136 |
-
s = s.decode("utf-8")
|
137 |
-
except:
|
138 |
-
pass
|
139 |
-
print(f"{repr(s)}{i}", end=" ")
|
140 |
-
print()
|
141 |
-
|
142 |
-
|
143 |
-
class Rwkv6Tokenizer(PreTrainedTokenizer):
|
144 |
vocab_files_names = VOCAB_FILES_NAMES
|
|
|
|
|
|
|
145 |
model_input_names = ["input_ids", "attention_mask"]
|
146 |
|
147 |
-
def __init__(
|
148 |
-
self, vocab_file, bos_token="<s>", eos_token="<s>", unk_token="<s>", **kwargs
|
149 |
-
):
|
150 |
if not os.path.isfile(vocab_file):
|
151 |
raise ValueError(
|
152 |
f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained"
|
153 |
" model use `tokenizer = BertTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`"
|
154 |
)
|
155 |
|
156 |
-
with open(vocab_file, "r"
|
157 |
tokens = reader.readlines()
|
|
|
|
|
|
|
|
|
158 |
|
159 |
-
|
160 |
-
self.add_bos_token = kwargs["add_bos_token"]
|
161 |
-
else:
|
162 |
-
self.add_bos_token = False
|
163 |
-
self.trie_tokenizer = RWKV_TOKENIZER(vocab_file)
|
164 |
-
vocab = self.trie_tokenizer.token2idx
|
165 |
self.encoder = vocab
|
166 |
self.decoder = {v: k for k, v in vocab.items()}
|
|
|
167 |
self._added_tokens_decoder = {0: AddedToken(str(bos_token))}
|
168 |
-
super().__init__(
|
169 |
-
bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, **kwargs
|
170 |
-
)
|
171 |
|
172 |
@property
|
173 |
def vocab_size(self):
|
@@ -179,11 +139,15 @@ class Rwkv6Tokenizer(PreTrainedTokenizer):
|
|
179 |
return vocab
|
180 |
|
181 |
def _tokenize(self, text, split_special_tokens=False):
|
182 |
-
|
183 |
-
return self.trie_tokenizer.encode(text)[0]
|
184 |
|
185 |
def _convert_token_to_id(self, token):
|
186 |
-
|
|
|
|
|
|
|
|
|
|
|
187 |
|
188 |
def _convert_id_to_token(self, index):
|
189 |
"""Converts an index (integer) in a token (byte) using the vocab."""
|
@@ -194,28 +158,21 @@ class Rwkv6Tokenizer(PreTrainedTokenizer):
|
|
194 |
|
195 |
def convert_tokens_to_string(self, tokens):
|
196 |
"""Converts a sequence of tokens (bytes) in a single string. Additional tokens are encoded to bytes"""
|
197 |
-
out_string = b"".join(
|
198 |
-
|
199 |
-
)
|
200 |
return out_string
|
201 |
|
202 |
-
def save_vocabulary(
|
203 |
-
self, save_directory: str, filename_prefix: Optional[str] = None
|
204 |
-
) -> Tuple[str]:
|
205 |
index = 0
|
206 |
if os.path.isdir(save_directory):
|
207 |
vocab_file = os.path.join(
|
208 |
-
save_directory,
|
209 |
-
(filename_prefix + "-" if filename_prefix else "") + "vocab.txt",
|
210 |
)
|
211 |
else:
|
212 |
-
vocab_file = (
|
213 |
-
|
214 |
-
)
|
215 |
-
with open(vocab_file, "w", encoding="utf-8") as writer:
|
216 |
-
for token, token_index in sorted(
|
217 |
-
self.encoder.items(), key=lambda kv: kv[1]
|
218 |
-
):
|
219 |
if index != token_index:
|
220 |
logger.warning(
|
221 |
f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive."
|
@@ -240,10 +197,7 @@ class Rwkv6Tokenizer(PreTrainedTokenizer):
|
|
240 |
return output + bos_token_ids + token_ids_1
|
241 |
|
242 |
def get_special_tokens_mask(
|
243 |
-
self,
|
244 |
-
token_ids_0: List[int],
|
245 |
-
token_ids_1: Optional[List[int]] = None,
|
246 |
-
already_has_special_tokens: bool = False,
|
247 |
) -> List[int]:
|
248 |
"""
|
249 |
Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding
|
@@ -262,16 +216,12 @@ class Rwkv6Tokenizer(PreTrainedTokenizer):
|
|
262 |
"""
|
263 |
if already_has_special_tokens:
|
264 |
return super().get_special_tokens_mask(
|
265 |
-
token_ids_0=token_ids_0,
|
266 |
-
token_ids_1=token_ids_1,
|
267 |
-
already_has_special_tokens=True,
|
268 |
)
|
269 |
|
270 |
if not self.add_bos_token:
|
271 |
return super().get_special_tokens_mask(
|
272 |
-
token_ids_0=token_ids_0,
|
273 |
-
token_ids_1=token_ids_1,
|
274 |
-
already_has_special_tokens=False,
|
275 |
)
|
276 |
|
277 |
if token_ids_1 is None:
|
|
|
12 |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
# See the License for the specific language governing permissions and
|
14 |
# limitations under the License.
|
15 |
+
"""Tokenization classes for RWKV5."""
|
16 |
|
17 |
import os
|
18 |
import re
|
|
|
27 |
|
28 |
logger = logging.get_logger(__name__)
|
29 |
|
|
|
30 |
VOCAB_FILES_NAMES = {
|
31 |
+
"vocab_file": "vocab.txt",
|
32 |
+
}
|
33 |
+
PRETRAINED_VOCAB_FILES_MAP = {
|
34 |
+
"vocab_file": {
|
35 |
+
"ArthurZ/rwkv-5-utf": "https://huggingface.co/ArthurZ/rwkv-5-utf/blob/main/vocab.txt",
|
36 |
+
},
|
37 |
}
|
38 |
|
39 |
+
|
40 |
+
def whitespace_tokenize(text):
|
41 |
+
"""Runs basic whitespace cleaning and splitting on a piece of text.
|
42 |
+
The separators are kept
|
43 |
+
"""
|
44 |
+
text = text.strip()
|
45 |
+
if not text:
|
46 |
+
return []
|
47 |
+
tokens = re.split(b"(?= )", text)
|
48 |
+
return tokens
|
49 |
+
|
50 |
+
|
51 |
+
class WordpieceTokenizer(object):
|
52 |
+
"""Runs WordPiece tokenization."""
|
53 |
+
|
54 |
+
def __init__(self, vocab, unk_token):
|
55 |
+
self.vocab = vocab
|
56 |
+
self.unk_token = unk_token
|
57 |
+
|
58 |
+
def tokenize(self, text):
|
59 |
+
"""
|
60 |
+
Tokenizes a piece of text into its word pieces. This uses a greedy longest-match-first algorithm to perform
|
61 |
+
tokenization using the given vocabulary.
|
62 |
+
|
63 |
+
For example, `input = "unaffable"` wil return as output `["un", "##aff", "##able"]`.
|
64 |
+
|
65 |
+
Args:
|
66 |
+
text: A single token or whitespace separated tokens. This should have
|
67 |
+
already been passed through *BasicTokenizer*.
|
68 |
+
|
69 |
+
Returns:
|
70 |
+
A list of wordpiece tokens.
|
71 |
+
"""
|
72 |
+
|
73 |
+
output_tokens = []
|
74 |
+
for token in whitespace_tokenize(text):
|
75 |
+
chars = list(token)
|
76 |
+
is_bad = False
|
77 |
+
start = 0
|
78 |
+
sub_tokens = []
|
79 |
+
while start < len(chars):
|
80 |
+
end = len(chars)
|
81 |
+
cur_substr = None
|
82 |
+
while start < end:
|
83 |
+
substr = bytes(chars[start:end])
|
84 |
+
if substr in self.vocab:
|
85 |
+
cur_substr = substr
|
86 |
+
break
|
87 |
+
end -= 1
|
88 |
+
if cur_substr is None:
|
89 |
+
is_bad = True
|
90 |
+
break
|
91 |
+
try:
|
92 |
+
cur_substr = cur_substr.decode()
|
93 |
+
except UnicodeDecodeError:
|
94 |
+
cur_substr = str(cur_substr)
|
95 |
+
sub_tokens.append(cur_substr)
|
96 |
+
start = end
|
97 |
+
if is_bad:
|
98 |
+
output_tokens.append(self.unk_token)
|
99 |
+
else:
|
100 |
+
output_tokens.extend(sub_tokens)
|
101 |
+
return output_tokens
|
102 |
+
|
103 |
+
|
104 |
+
class Rwkv5Tokenizer(PreTrainedTokenizer):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
vocab_files_names = VOCAB_FILES_NAMES
|
106 |
+
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
107 |
+
max_model_input_sizes = {"ArthurZ/rwkv-5-utf": 2048}
|
108 |
+
|
109 |
model_input_names = ["input_ids", "attention_mask"]
|
110 |
|
111 |
+
def __init__(self, vocab_file, bos_token="<s>", eos_token="<s>", unk_token="<s>", **kwargs):
|
|
|
|
|
112 |
if not os.path.isfile(vocab_file):
|
113 |
raise ValueError(
|
114 |
f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained"
|
115 |
" model use `tokenizer = BertTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`"
|
116 |
)
|
117 |
|
118 |
+
with open(vocab_file, "r") as reader:
|
119 |
tokens = reader.readlines()
|
120 |
+
vocab = {}
|
121 |
+
for index, token in enumerate(tokens):
|
122 |
+
token = eval(token.rstrip("\n"))
|
123 |
+
vocab[token] = index
|
124 |
|
125 |
+
self.add_bos_token = True
|
|
|
|
|
|
|
|
|
|
|
126 |
self.encoder = vocab
|
127 |
self.decoder = {v: k for k, v in vocab.items()}
|
128 |
+
self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.encoder, unk_token=str(unk_token))
|
129 |
self._added_tokens_decoder = {0: AddedToken(str(bos_token))}
|
130 |
+
super().__init__(bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, **kwargs)
|
|
|
|
|
131 |
|
132 |
@property
|
133 |
def vocab_size(self):
|
|
|
139 |
return vocab
|
140 |
|
141 |
def _tokenize(self, text, split_special_tokens=False):
|
142 |
+
return self.wordpiece_tokenizer.tokenize(text.encode("utf-8"))
|
|
|
143 |
|
144 |
def _convert_token_to_id(self, token):
|
145 |
+
"""Converts a token (byte) to an id using the vocab."""
|
146 |
+
if token.startswith("b'\\"):
|
147 |
+
token = eval(token)
|
148 |
+
elif not isinstance(token, bytes):
|
149 |
+
token = token.encode("utf-8", errors="replace")
|
150 |
+
return self.encoder.get(token, self.unk_token_id)
|
151 |
|
152 |
def _convert_id_to_token(self, index):
|
153 |
"""Converts an index (integer) in a token (byte) using the vocab."""
|
|
|
158 |
|
159 |
def convert_tokens_to_string(self, tokens):
|
160 |
"""Converts a sequence of tokens (bytes) in a single string. Additional tokens are encoded to bytes"""
|
161 |
+
out_string = b"".join([k.encode(errors="replace") if isinstance(k, str) else k for k in tokens]).decode(
|
162 |
+
"utf-8"
|
163 |
+
)
|
164 |
return out_string
|
165 |
|
166 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
|
|
|
|
167 |
index = 0
|
168 |
if os.path.isdir(save_directory):
|
169 |
vocab_file = os.path.join(
|
170 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
|
|
171 |
)
|
172 |
else:
|
173 |
+
vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory
|
174 |
+
with open(vocab_file, "w") as writer:
|
175 |
+
for token, token_index in sorted(self.encoder.items(), key=lambda kv: kv[1]):
|
|
|
|
|
|
|
|
|
176 |
if index != token_index:
|
177 |
logger.warning(
|
178 |
f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive."
|
|
|
197 |
return output + bos_token_ids + token_ids_1
|
198 |
|
199 |
def get_special_tokens_mask(
|
200 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
|
|
|
|
|
|
201 |
) -> List[int]:
|
202 |
"""
|
203 |
Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding
|
|
|
216 |
"""
|
217 |
if already_has_special_tokens:
|
218 |
return super().get_special_tokens_mask(
|
219 |
+
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
|
|
|
|
220 |
)
|
221 |
|
222 |
if not self.add_bos_token:
|
223 |
return super().get_special_tokens_mask(
|
224 |
+
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=False
|
|
|
|
|
225 |
)
|
226 |
|
227 |
if token_ids_1 is None:
|
tokenizer_config.json
CHANGED
@@ -1,11 +1,11 @@
|
|
1 |
{
|
2 |
-
"name_or_path": "rwkv-
|
3 |
"add_prefix_space": false,
|
4 |
-
"tokenizer_class": "
|
5 |
"use_fast": false,
|
6 |
"auto_map": {
|
7 |
"AutoTokenizer": [
|
8 |
-
"
|
9 |
null
|
10 |
]
|
11 |
}
|
|
|
1 |
{
|
2 |
+
"name_or_path": "rwkv-5-tokenizer",
|
3 |
"add_prefix_space": false,
|
4 |
+
"tokenizer_class": "Rwkv5Tokenizer",
|
5 |
"use_fast": false,
|
6 |
"auto_map": {
|
7 |
"AutoTokenizer": [
|
8 |
+
"tokenization_rwkv5.Rwkv5Tokenizer",
|
9 |
null
|
10 |
]
|
11 |
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|