Edit model card

Open-Insurance-LLM-Llama3-8B-GGUF

This model is a GGUF-quantized version of an insurance domain-specific language model based on Llama 3-ChatQA Fine-tuned for insurance-related queries and conversations.

Model Details

  • Model Type: Quantized Language Model (GGUF format)
  • Base Model: nvidia/Llama3-ChatQA-1.5-8B
  • Finetuned Model: Raj-Maharajwala/Open-Insurance-LLM-Llama3-8B
  • Quantized Model: Raj-Maharajwala/Open-Insurance-LLM-Llama3-8B-GGUF
  • Model Architecture: Llama
  • Quantization: 8-bit (Q8_0)
  • Developer: Raj Maharajwala
  • License: llama3
  • Language: English

Finetuned Dataset:

  • InsuranceQA

Setup Instructions

Environment Setup

For Windows

python3 -m venv .venv_open_insurance_llm
.\venv\Scripts\activate

For Mac/Linux

python3 -m venv .venv_open_insurance_llm
source .venv_open_insurance_llm/bin/activate

Installation

For Mac Users (Metal Support)

export FORCE_CMAKE=1
CMAKE_ARGS="-DGGML_METAL=on" pip install --upgrade --force-reinstall llama-cpp-python==0.3.2 --no-cache-dir

Dependencies

Create a requirements.txt file with the following contents:

black==24.10.0
certifi==2024.8.30
charset-normalizer==3.4.0
click==8.1.7
diskcache==5.6.3
filelock==3.16.1
fsspec==2024.10.0
huggingface-hub==0.26.2
idna==3.10
iniconfig==2.0.0
isort==5.13.2
Jinja2==3.1.4
llama_cpp_python==0.3.2
markdown-it-py==3.0.0
MarkupSafe==3.0.2
mdurl==0.1.2
mypy-extensions==1.0.0
numpy==2.1.3
packaging==24.2
pathspec==0.12.1
platformdirs==4.3.6
pluggy==1.5.0
psutil==6.1.0
Pygments==2.18.0
pytest==8.3.3
PyYAML==6.0.2
requests==2.32.3
rich==13.9.4
tqdm==4.67.0
typing_extensions==4.12.2
urllib3==2.2.3

Then install dependencies:

pip install -r requirements.txt

Inference Loop

import os
import time
import logging
import sys
import psutil
import datetime
import traceback
import multiprocessing
from pathlib import Path
from llama_cpp import Llama
from typing import Optional, Dict, Any
from dataclasses import dataclass
from rich.console import Console
from rich.logging import RichHandler
from contextlib import contextmanager
from rich.traceback import install
from rich.theme import Theme
from huggingface_hub import hf_hub_download
# from rich.progress import Progress, SpinnerColumn, TimeElapsedColumn
# Install rich traceback handler
install(show_locals=True)

@dataclass
class ModelConfig:
    model_name: str = "Raj-Maharajwala/Open-Insurance-LLM-Llama3-8B-GGUF"
    model_file: str = "open-insurance-llm-q8_0.gguf"
    # model_file: str = "open-insurance-llm-q4_k_m.gguf"
    max_tokens: int = 1000
    top_k: int = 15
    top_p: float = 0.2
    repeat_penalty: float = 1.2
    num_beams: int = 4
    n_gpu_layers: int = -2 # -1 for complete GPU usage
    temperature: float = 0.1
    n_ctx: int = 2048 # 2048 - 8192 -> As per Llama 3 Full Capacity
    n_batch: int = 256
    verbose: bool = False
    use_mmap: bool = False
    use_mlock: bool = True
    offload_kqv: bool =True

class CustomFormatter(logging.Formatter):
    """Enhanced formatter with detailed context for different log levels"""  
    FORMATS = {
        logging.DEBUG: "🔍 %(asctime)s - %(name)s - [%(filename)s:%(lineno)d] - %(levelname)s - %(message)s",
        logging.INFO: "ℹ️ %(asctime)s - %(name)s - [%(funcName)s] - %(levelname)s - %(message)s",
        logging.WARNING: "⚠️ %(asctime)s - %(name)s - [%(funcName)s] - %(levelname)s - %(message)s\nContext: %(pathname)s",
        logging.ERROR: "❌ %(asctime)s - %(name)s - [%(funcName)s:%(lineno)d] - %(levelname)s - %(message)s\nTraceback: %(exc_info)s",
        logging.CRITICAL: """🚨 %(asctime)s - %(name)s - %(levelname)s
Location: %(pathname)s:%(lineno)d
Function: %(funcName)s
Process: %(process)d
Thread: %(thread)d
Message: %(message)s
Memory: %(memory).2fMB
%(exc_info)s
"""
    }

    def format(self, record):
        # Add memory usage information
        if not hasattr(record, 'memory'):
            record.memory = psutil.Process().memory_info().rss / (1024 * 1024)
        
        # Add exception info for ERROR and CRITICAL
        if record.levelno >= logging.ERROR and not record.exc_info:
            record.exc_info = traceback.format_exc()
            
        log_fmt = self.FORMATS.get(record.levelno)
        formatter = logging.Formatter(log_fmt, datefmt='%Y-%m-%d %H:%M:%S')
        
        # Add performance metrics
        if hasattr(record, 'duration'):
            record.message = f"{record.message}\nDuration: {record.duration:.2f}s"
            
        return formatter.format(record)

def setup_logging(log_dir: str = "logs") -> logging.Logger:
    """Enhanced logging setup with multiple handlers and log files"""
    Path(log_dir).mkdir(exist_ok=True)
    timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
    log_path = (Path(log_dir) / f"l_{timestamp}")
    log_path.mkdir(exist_ok=True)
    # Create separate log files for different levels
    handlers = {
        'debug': logging.FileHandler(log_path / f"debug_{timestamp}.log"),
        'info': logging.FileHandler(log_path / f"info_{timestamp}.log"),
        'error': logging.FileHandler(log_path / f"error_{timestamp}.log"),
        'critical': logging.FileHandler(log_path / f"critical_{timestamp}.log"),
        'console': RichHandler(
            console=Console(theme=custom_theme),
            show_time=True,
            show_path=False,
            enable_link_path=True
        )
    }    
    # Set levels for handlers
    handlers['debug'].setLevel(logging.DEBUG)
    handlers['info'].setLevel(logging.INFO)
    handlers['error'].setLevel(logging.ERROR)
    handlers['critical'].setLevel(logging.CRITICAL)
    handlers['console'].setLevel(logging.INFO)
    # Apply formatter to all handlers
    formatter = CustomFormatter()
    for handler in handlers.values():
        handler.setFormatter(formatter)
    # Configure root logger
    logger = logging.getLogger("InsuranceLLM")
    logger.setLevel(logging.DEBUG)
    # Add all handlers
    for handler in handlers.values():
        logger.addHandler(handler)
    # Log startup information
    logger.info(f"Starting new session {timestamp}")
    logger.info(f"Log directory: {log_dir}")
    return logger

# Custom theme configuration
custom_theme = Theme({"info": "bold cyan","warning": "bold yellow", "error": "bold red","critical": "bold white on red","success": "bold green","timestamp": "bold magenta","metrics": "bold blue","memory": "bold yellow","performance": "bold cyan",})

console = Console(theme=custom_theme)

class PerformanceMetrics:
    def __init__(self):
        self.start_time = time.time()
        self.tokens = 0
        self.response_times = []
        
    def update(self, tokens: int, response_time: float = None):
        self.tokens += tokens
        if response_time:
            self.response_times.append(response_time)
    
    @property
    def elapsed_time(self) -> float:
        return time.time() - self.start_time
    
    @property
    def tokens_per_second(self) -> float:
        return self.tokens / self.elapsed_time if self.elapsed_time > 0 else 0
    
    @property
    def average_response_time(self) -> float:
        return sum(self.response_times) / len(self.response_times) if self.response_times else 0

class InsuranceLLM:
    def __init__(self, config: ModelConfig):
        self.config = config
        self.llm_ctx: Optional[Llama] = None
        self.metrics = PerformanceMetrics()
        self.logger = setup_logging()
        
        nvidia_llama3_chatqa_system = (
            "This is a chat between a user and an artificial intelligence assistant. "
            "The assistant gives helpful, detailed, and polite answers to the user's questions based on the context. "
            "The assistant should also indicate when the answer cannot be found in the context. "
        )
        enhanced_system_message = (
            "You are an expert and experienced from the Insurance domain with extensive insurance knowledge and "
            "professional writer skills, especially about insurance policies. "
            "Your name is OpenInsuranceLLM, and you were developed by Raj Maharajwala. "
            "You are willing to help answer the user's query with a detailed explanation. "
            "In your explanation, leverage your deep insurance expertise, such as relevant insurance policies, "
            "complex coverage plans, or other pertinent insurance concepts. Use precise insurance terminology while "
            "still aiming to make the explanation clear and accessible to a general audience."
        )
        self.full_system_message = nvidia_llama3_chatqa_system + enhanced_system_message

    @contextmanager
    def timer(self, description: str):
        start_time = time.time()
        yield
        elapsed_time = time.time() - start_time
        self.logger.info(f"{description}: {elapsed_time:.2f}s")

    def download_model(self) -> str:
        try:
            with console.status("[bold green]Downloading model..."):
                model_path = hf_hub_download(
                    self.config.model_name,
                    filename=self.config.model_file,
                    local_dir=os.path.join(os.getcwd(), 'gguf_dir')
                )
            self.logger.info(f"Model downloaded successfully to {model_path}")
            return model_path
        except Exception as e:
            self.logger.error(f"Error downloading model: {str(e)}")
            raise

    def load_model(self) -> None:
        try:
            # self.check_metal_support()
            quantized_path = os.path.join(os.getcwd(), "gguf_dir")
            directory = Path(quantized_path)
            
            try:
                model_path = str(list(directory.glob(self.config.model_file))[0])
            except IndexError:
                model_path = self.download_model()
            
            with console.status("[bold green]Loading model..."):
                self.llm_ctx = Llama(
                    model_path=model_path,
                    n_gpu_layers=self.config.n_gpu_layers,
                    n_ctx=self.config.n_ctx,
                    n_batch=self.config.n_batch,
                    num_beams=self.config.num_beams,
                    verbose=self.config.verbose,
                    use_mlock=self.config.use_mlock,
                    use_mmap=self.config.verbose,
                    offload_kqv=self.config.verbose
                )
            self.logger.info("Model loaded successfully")
            
        except Exception as e:
            self.logger.error(f"Error loading model: {str(e)}")
            raise

    def get_prompt(self, question: str, context: str = "") -> str:
        if context:
            return (
                f"System: {self.full_system_message}\n\n"
                f"User: Context: {context}\nQuestion: {question}\n\n"
                "Assistant:"
            )
        return (
            f"System: {self.full_system_message}\n\n"
            f"User: Question: {question}\n\n"
            "Assistant:"
        )

    def generate_response(self, prompt: str) -> Dict[str, Any]:
        if not self.llm_ctx:
            raise RuntimeError("Model not loaded. Call load_model() first.")
        
        try:
            response = {"text": "", "tokens": 0}
            console.print("[bold cyan]Assistant:[/bold cyan]", end=" ")
            
            for chunk in self.llm_ctx.create_completion(
                prompt,
                max_tokens=self.config.max_tokens,
                top_k=self.config.top_k,
                top_p=self.config.top_p,
                temperature=self.config.temperature,
                repeat_penalty=self.config.repeat_penalty,
                stream=True
            ):
                text_chunk = chunk["choices"][0]["text"]
                response["text"] += text_chunk
                response["tokens"] += 1
                console.print(text_chunk, end="", markup=False)
            
            console.print()
            return response
            
        except RuntimeError as e:
            if "llama_decode returned -3" in str(e):
                self.logger.error("Memory allocation failed. Try reducing context window or batch size")
            raise

    def print_metrics(self, response_tokens: int, memory_used: float):
        try:
            console.print("\n[dim]Performance Metrics:[/dim]")
            console.print(f"[dim]Memory usage: {memory_used:.2f} MB[/dim]")
            console.print(f"[dim]Tokens generated: {response_tokens}[/dim]")
            console.print(f"[dim]Average tokens/sec: {self.metrics.tokens_per_second:.2f}[/dim]")
            console.print(f"[dim]Total tokens: {self.metrics.tokens}[/dim]")
            console.print(f"[dim]Total time: {self.metrics.elapsed_time:.2f}s[/dim]\n")
        except Exception as e:
            self.logger.error(f"Error printing metrics: {str(e)}")
            print(f"\nPerformance Metrics:")
            print(f"Memory usage: {memory_used:.2f} MB")
            print(f"Tokens generated: {response_tokens}")
            print(f"Average tokens/sec: {self.metrics.tokens_per_second:.2f}")
            print(f"Total tokens: {self.metrics.tokens}")
            print(f"Total time: {self.metrics.elapsed_time:.2f}s\n")

    def run_inference_loop(self):
        try:
            self.load_model()
            console.print("\n[bold green]Welcome to Open-Insurance-LLM![/bold green]")
            console.print("Enter your questions (type '/bye', 'exit', or 'quit' to end the session)\n")
            console.print("Optional: You can provide context by typing 'context:' followed by your context, then 'question:' followed by your question\n")
            
            while True:
                try:
                    user_input = console.input("[bold cyan]User:[/bold cyan] ").strip()
                    
                    exit_commands = ["exit", "/bye", "quit"]
                    if user_input.lower() in exit_commands:
                        console.print("\n[bold green]Thank you for using OpenInsuranceLLM![/bold green]")
                        break
                    
                    context = ""
                    question = user_input
                    if "context:" in user_input.lower() and "question:" in user_input.lower():
                        parts = user_input.split("question:", 1)
                        context = parts[0].replace("context:", "").strip()
                        question = parts[1].strip()
                    
                    prompt = self.get_prompt(question, context)
                    
                    with self.timer("Response generation"):
                        response = self.generate_response(prompt)
                    
                    self.metrics.update(response["tokens"])
                    memory_used = psutil.Process().memory_info().rss / 1024 / 1024
                    self.print_metrics(response["tokens"], memory_used)
                    
                except KeyboardInterrupt:
                    console.print("\n[yellow]Input interrupted. Type '/bye', 'exit', or 'quit' to quit.[/yellow]")
                    continue
                except Exception as e:
                    self.logger.error(f"Error processing input: {str(e)}")
                    console.print(f"\n[red]Error processing input: {str(e)}[/red]")
                    continue
                    
        except Exception as e:
            self.logger.error(f"Fatal error in inference loop: {str(e)}")
            console.print(f"\n[red]Fatal error: {str(e)}[/red]")
        finally:
            if self.llm_ctx:
                del self.llm_ctx

def main():
    try:
        config = ModelConfig()
        llm = InsuranceLLM(config)
        llm.run_inference_loop()
    except KeyboardInterrupt:
        console.print("\n[yellow]Program interrupted by user[/yellow]")
    except Exception as e:
        logging.error(f"Application error: {str(e)}")
        console.print(f"\n[red]Fatal error: {str(e)}[/red]")

if __name__ == "__main__":
    main()

Nvidia Llama 3 - ChatQA Paper:

Arxiv : https://arxiv.org/pdf/2401.10225

Use Cases

This model is specifically designed for:

  • Insurance policy understanding and explanation
  • Claims processing assistance
  • Coverage analysis
  • Insurance terminology clarification
  • Policy comparison and recommendations
  • Risk assessment queries
  • Insurance compliance questions

Limitations

  • The model's knowledge is limited to its training data cutoff
  • Should not be used as a replacement for professional insurance advice
  • May occasionally generate plausible-sounding but incorrect information

Bias and Ethics

This model should be used with awareness that:

  • It may reflect biases present in insurance industry training data
  • Output should be verified by insurance professionals for critical decisions
  • It should not be used as the sole basis for insurance decisions
  • The model's responses should be treated as informational, not as legal or professional advice

Citation and Attribution

If you use base model or quantized model in your research or applications, please cite:

@misc{maharajwala2024openinsurance,
  author = {Raj Maharajwala},
  title = {Open-Insurance-LLM-Llama3-8B-GGUF},
  year = {2024},
  publisher = {HuggingFace},
  url = {https://huggingface.co/Raj-Maharajwala/Open-Insurance-LLM-Llama3-8B-GGUF}
}
Downloads last month
64
GGUF
Model size
8.03B params
Architecture
llama

8-bit

Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Raj-Maharajwala/Open-Insurance-LLM-Llama3-8B-GGUF

Quantized
(19)
this model