Adding an example of using pretrained model to predict emotion in local audio file
f02201b
inference: true | |
pipeline_tag: audio-classification | |
tags: | |
- speech | |
- audio | |
- HUBert | |
Working example of using pretrained model to predict emotion in local audio file | |
``` | |
def predict_emotion_hubert(audio_file): | |
""" inspired by an example from https://github.com/m3hrdadfi/soxan """ | |
from audio_models import HubertForSpeechClassification | |
from transformers import Wav2Vec2FeatureExtractor, AutoConfig | |
import torch.nn.functional as F | |
import torch | |
import numpy as np | |
from pydub import AudioSegment | |
model = HubertForSpeechClassification.from_pretrained("Rajaram1996/Hubert_emotion") # Downloading: 362M | |
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("facebook/hubert-base-ls960") | |
sampling_rate=16000 # defined by the model; must convert mp3 to this rate. | |
config = AutoConfig.from_pretrained("Rajaram1996/Hubert_emotion") | |
def speech_file_to_array(path, sampling_rate): | |
# using torchaudio... | |
# speech_array, _sampling_rate = torchaudio.load(path) | |
# resampler = torchaudio.transforms.Resample(_sampling_rate, sampling_rate) | |
# speech = resampler(speech_array).squeeze().numpy() | |
sound = AudioSegment.from_file(path) | |
sound = sound.set_frame_rate(sampling_rate) | |
sound_array = np.array(sound.get_array_of_samples()) | |
return sound_array | |
sound_array = speech_file_to_array(audio_file, sampling_rate) | |
inputs = feature_extractor(sound_array, sampling_rate=sampling_rate, return_tensors="pt", padding=True) | |
inputs = {key: inputs[key].to("cpu").float() for key in inputs} | |
with torch.no_grad(): | |
logits = model(**inputs).logits | |
scores = F.softmax(logits, dim=1).detach().cpu().numpy()[0] | |
outputs = [{ | |
"emo": config.id2label[i], | |
"score": round(score * 100, 1)} | |
for i, score in enumerate(scores) | |
] | |
return [row for row in sorted(outputs, key=lambda x:x["score"], reverse=True) if row['score'] != '0.0%'][:2] | |
``` | |
``` | |
result = predict_emotion_hubert("male-crying.mp3") | |
>>> result | |
[{'emo': 'male_sad', 'score': 91.0}, {'emo': 'male_fear', 'score': 4.8}] | |
``` | |