|
--- |
|
language: |
|
- en |
|
--- |
|
# Model Card for roberta-base-on-cuad |
|
|
|
# Model Details |
|
|
|
## Model Description |
|
|
|
- **Developed by:** Mohammed Rakib |
|
- **Shared by [Optional]:** More information needed |
|
- **Model type:** Question Answering |
|
- **Language(s) (NLP):** en |
|
- **License:** More information needed |
|
- **Related Models:** |
|
- **Parent Model:** RoBERTa |
|
- **Resources for more information:** |
|
- [GitHub Repo](https://github.com/facebookresearch/fairseq/tree/main/examples/roberta) |
|
- [Associated Paper](https://arxiv.org/abs/1907.11692) |
|
|
|
|
|
|
|
|
|
# Uses |
|
|
|
|
|
## Direct Use |
|
|
|
This model can be used for the task of Question Answering. |
|
|
|
## Downstream Use [Optional] |
|
|
|
More information needed |
|
|
|
## Out-of-Scope Use |
|
|
|
The model should not be used to intentionally create hostile or alienating environments for people. |
|
|
|
# Bias, Risks, and Limitations |
|
|
|
Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups. |
|
|
|
|
|
## Recommendations |
|
|
|
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. |
|
|
|
|
|
# Training Details |
|
|
|
## Training Data |
|
|
|
See [CUAD dataset card](https://huggingface.co/datasets/cuad) for more information. |
|
|
|
## Training Procedure |
|
|
|
|
|
### Preprocessing |
|
|
|
More information needed |
|
|
|
### Speeds, Sizes, Times |
|
|
|
More information needed |
|
|
|
# Evaluation |
|
|
|
|
|
## Testing Data, Factors & Metrics |
|
|
|
### Testing Data |
|
|
|
See [CUAD dataset card](https://huggingface.co/datasets/cuad) for more information. |
|
|
|
### Factors |
|
|
|
|
|
### Metrics |
|
|
|
More information needed |
|
## Results |
|
|
|
More information needed |
|
|
|
# Model Examination |
|
|
|
More information needed |
|
|
|
# Environmental Impact |
|
|
|
|
|
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). |
|
|
|
- **Hardware Type:** More information needed |
|
- **Hours used:** More information needed |
|
- **Cloud Provider:** More information needed |
|
- **Compute Region:** More information needed |
|
- **Carbon Emitted:** More information needed |
|
|
|
# Technical Specifications [optional] |
|
|
|
## Model Architecture and Objective |
|
|
|
More information needed |
|
|
|
## Compute Infrastructure |
|
|
|
More information needed |
|
|
|
### Hardware |
|
|
|
More information needed |
|
|
|
### Software |
|
More information needed |
|
|
|
# Citation |
|
|
|
|
|
**BibTeX:** |
|
``` |
|
@article{DBLP:journals/corr/abs-1907-11692, |
|
author = {Yinhan Liu and |
|
Myle Ott and |
|
Naman Goyal and |
|
Jingfei Du and |
|
Mandar Joshi and |
|
Danqi Chen and |
|
Omer Levy and |
|
Mike Lewis and |
|
Luke Zettlemoyer and |
|
Veselin Stoyanov}, |
|
title = {RoBERTa: {A} Robustly Optimized {BERT} Pretraining Approach}, |
|
journal = {CoRR}, |
|
volume = {abs/1907.11692}, |
|
year = {2019}, |
|
url = {http://arxiv.org/abs/1907.11692}, |
|
archivePrefix = {arXiv}, |
|
eprint = {1907.11692}, |
|
timestamp = {Thu, 01 Aug 2019 08:59:33 +0200}, |
|
biburl = {https://dblp.org/rec/journals/corr/abs-1907-11692.bib}, |
|
bibsource = {dblp computer science bibliography, https://dblp.org} |
|
} |
|
``` |
|
|
|
|
|
# Glossary [optional] |
|
More information needed |
|
|
|
# More Information [optional] |
|
|
|
More information needed |
|
|
|
# Model Card Authors [optional] |
|
|
|
Mohammed Rakib in collaboration with Ezi Ozoani and the Hugging Face team |
|
|
|
# Model Card Contact |
|
|
|
More information needed |
|
|
|
# How to Get Started with the Model |
|
|
|
Use the code below to get started with the model. |
|
|
|
<details> |
|
<summary> Click to expand </summary> |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModelForQuestionAnswering |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("Rakib/roberta-base-on-cuad") |
|
|
|
model = AutoModelForQuestionAnswering.from_pretrained("Rakib/roberta-base-on-cuad") |
|
``` |
|
</details> |
|
|