metadata
library_name: transformers
license: llama3.2
base_model: meta-llama/Llama-3.2-3B-Instruct
tags:
- trl
- orpo
- generated_from_trainer
model-index:
- name: results
results: []
results
This model is a fine-tuned version of meta-llama/Llama-3.2-3B-Instruct on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.7865
- Rewards/chosen: -0.0728
- Rewards/rejected: -0.1410
- Rewards/accuracies: 1.0
- Rewards/margins: 0.0682
- Logps/rejected: -1.4102
- Logps/chosen: -0.7284
- Logits/rejected: -1.3629
- Logits/chosen: -1.0739
- Nll Loss: 0.7297
- Log Odds Ratio: -0.3156
- Log Odds Chosen: 1.0813
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 8e-06
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- total_eval_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 5
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | Nll Loss | Log Odds Ratio | Log Odds Chosen |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
No log | 0.8 | 5 | 3.8120 | -0.2526 | -0.2936 | 1.0 | 0.0411 | -2.9364 | -2.5255 | -0.1324 | 0.0341 | 3.7999 | -0.5042 | 0.4449 |
4.046 | 1.6 | 10 | 2.5798 | -0.1655 | -0.2025 | 0.8333 | 0.0370 | -2.0247 | -1.6551 | -0.5901 | -0.3606 | 2.5283 | -0.4995 | 0.4487 |
4.046 | 2.4 | 15 | 1.7548 | -0.1310 | -0.1707 | 0.8333 | 0.0396 | -1.7065 | -1.3105 | -1.0779 | -0.8067 | 1.6757 | -0.4762 | 0.5189 |
1.6806 | 3.2 | 20 | 1.2964 | -0.1081 | -0.1505 | 0.8333 | 0.0423 | -1.5045 | -1.0815 | -1.2319 | -0.9478 | 1.2096 | -0.4555 | 0.5966 |
1.6806 | 4.0 | 25 | 1.0927 | -0.0927 | -0.1413 | 0.8333 | 0.0486 | -1.4130 | -0.9266 | -1.2313 | -0.9509 | 1.0155 | -0.4199 | 0.7223 |
0.9531 | 4.8 | 30 | 0.9672 | -0.0831 | -0.1381 | 1.0 | 0.0550 | -1.3815 | -0.8311 | -1.2424 | -0.9626 | 0.8961 | -0.3827 | 0.8429 |
0.9531 | 5.6 | 35 | 0.8865 | -0.0779 | -0.1375 | 1.0 | 0.0597 | -1.3751 | -0.7785 | -1.2870 | -0.9968 | 0.8182 | -0.3555 | 0.9335 |
0.7263 | 6.4 | 40 | 0.8374 | -0.0755 | -0.1388 | 1.0 | 0.0633 | -1.3876 | -0.7545 | -1.3805 | -1.0853 | 0.7755 | -0.3371 | 0.9980 |
0.7263 | 7.2 | 45 | 0.8076 | -0.0739 | -0.1400 | 1.0 | 0.0660 | -1.3996 | -0.7393 | -1.3674 | -1.0741 | 0.7480 | -0.3248 | 1.0448 |
0.6366 | 8.0 | 50 | 0.7919 | -0.0730 | -0.1405 | 1.0 | 0.0675 | -1.4052 | -0.7297 | -1.3511 | -1.0575 | 0.7335 | -0.3178 | 1.0721 |
0.6366 | 8.8 | 55 | 0.7878 | -0.0729 | -0.1410 | 1.0 | 0.0681 | -1.4100 | -0.7293 | -1.3573 | -1.0602 | 0.7302 | -0.3161 | 1.0787 |
0.6276 | 9.6 | 60 | 0.7865 | -0.0728 | -0.1410 | 1.0 | 0.0682 | -1.4102 | -0.7284 | -1.3629 | -1.0739 | 0.7297 | -0.3156 | 1.0813 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.2.0+cu121
- Datasets 3.0.0
- Tokenizers 0.19.1