TrOCR-Sinhala

See training metrics tab for performance details.

Model description

This model is finetuned version of Microsoft TrOCR Printed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Example

from PIL import Image
import requests
from io import BytesIO

from transformers import TrOCRProcessor, VisionEncoderDecoderModel, AutoTokenizer

image_url = "https://datasets-server.huggingface.co/assets/Ransaka/sinhala_synthetic_ocr/--/bf7c8a455b564cd73fe035031e19a5f39babb73b/--/default/train/0/image/image.jpg"
response = requests.get(image_url)
img = Image.open(BytesIO(response.content))

processor = TrOCRProcessor.from_pretrained('Ransaka/TrOCR-Sinhala')
model = VisionEncoderDecoderModel.from_pretrained('Ransaka/TrOCR-Sinhala')
model.to("cuda:0")

pixel_values = processor(img, return_tensors="pt").pixel_values.to('cuda:0')  
generated_ids = model.generate(pixel_values,num_beams=2,early_stopping=True)
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
generated_text #දිවයිනට බලයට ඇති ආපදා තත්ත්වය හමුවේ සබරගමුව පළාතේ

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.0.0
  • Datasets 2.16.0
  • Tokenizers 0.15.0
Downloads last month
34
Safetensors
Model size
315M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Ransaka/TrOCR-Sinhala

Finetuned
(2)
this model