sinhala-ocr-model-v3

This model is a fine-tuned version of Ransaka/sinhala-ocr-model on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 4.7242
  • Cer: 0.2764

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 6000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Cer
3.6711 6.54 500 4.9311 0.4178
2.3499 13.07 1000 4.5366 0.3482
1.5601 19.61 1500 4.4634 0.3204
0.987 26.14 2000 4.4804 0.3011
0.6487 32.68 2500 4.6310 0.2863
0.3816 39.22 3000 4.6093 0.2788
0.3494 45.75 3500 4.6291 0.2827
0.2357 52.29 4000 4.6399 0.2780
0.2188 58.82 4500 4.6313 0.2798
0.1413 65.36 5000 4.6828 0.2768
0.0985 71.9 5500 4.7135 0.2772
0.1086 78.43 6000 4.7242 0.2764

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.0.0
  • Datasets 2.16.0
  • Tokenizers 0.15.0
Downloads last month
6
Safetensors
Model size
315M params
Tensor type
F32
·
Inference API
Inference API (serverless) does not yet support transformers models for this pipeline type.

Model tree for Ransaka/sinhala-ocr-model-v3

Finetuned
(2)
this model