File size: 2,097 Bytes
23f1c5d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
---
base_model: Ransaka/sinhala-ocr-model
tags:
- generated_from_trainer
model-index:
- name: sinhala-ocr-model-v3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# sinhala-ocr-model-v3
This model is a fine-tuned version of [Ransaka/sinhala-ocr-model](https://huggingface.co/Ransaka/sinhala-ocr-model) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 4.7242
- Cer: 0.2764
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 6000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Cer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 3.6711 | 6.54 | 500 | 4.9311 | 0.4178 |
| 2.3499 | 13.07 | 1000 | 4.5366 | 0.3482 |
| 1.5601 | 19.61 | 1500 | 4.4634 | 0.3204 |
| 0.987 | 26.14 | 2000 | 4.4804 | 0.3011 |
| 0.6487 | 32.68 | 2500 | 4.6310 | 0.2863 |
| 0.3816 | 39.22 | 3000 | 4.6093 | 0.2788 |
| 0.3494 | 45.75 | 3500 | 4.6291 | 0.2827 |
| 0.2357 | 52.29 | 4000 | 4.6399 | 0.2780 |
| 0.2188 | 58.82 | 4500 | 4.6313 | 0.2798 |
| 0.1413 | 65.36 | 5000 | 4.6828 | 0.2768 |
| 0.0985 | 71.9 | 5500 | 4.7135 | 0.2772 |
| 0.1086 | 78.43 | 6000 | 4.7242 | 0.2764 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.0.0
- Datasets 2.16.0
- Tokenizers 0.15.0
|