bert-finetuned-ner
This model is a fine-tuned version of bert-base-cased on the wikiann dataset. It achieves the following results on the evaluation set:
- Loss: 0.3217
- Precision: 0.8196
- Recall: 0.8445
- F1: 0.8319
- Accuracy: 0.9269
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.2821 | 1.0 | 2500 | 0.2906 | 0.7983 | 0.8227 | 0.8103 | 0.9193 |
0.2087 | 2.0 | 5000 | 0.2614 | 0.8030 | 0.8379 | 0.8201 | 0.9257 |
0.1404 | 3.0 | 7500 | 0.3217 | 0.8196 | 0.8445 | 0.8319 | 0.9269 |
Framework versions
- Transformers 4.19.2
- Pytorch 1.11.0+cu113
- Datasets 2.2.2
- Tokenizers 0.12.1
- Downloads last month
- 107
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Dataset used to train Ravindra001/bert-finetuned-ner
Evaluation results
- Precision on wikiannself-reported0.820
- Recall on wikiannself-reported0.844
- F1 on wikiannself-reported0.832
- Accuracy on wikiannself-reported0.927
- Accuracy on wikianntest set self-reported0.849
- Precision on wikianntest set self-reported0.857
- Recall on wikianntest set self-reported0.866
- F1 on wikianntest set self-reported0.862
- loss on wikianntest set self-reported1.055