Visualize in Weights & Biases

Llama3.2-3B-Instruct-finetunedv2

This model is a fine-tuned version of meta-llama/Llama-3.2-3B-Instruct on an unknown dataset.

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 3
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 48
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 400
  • mixed_precision_training: Native AMP

Framework versions

  • PEFT 0.14.0
  • Transformers 4.46.3
  • Pytorch 2.6.0+xpu
  • Datasets 3.2.0
  • Tokenizers 0.20.3
Downloads last month
3
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for RayBernard/Llama3.2-3B-Instruct-finetunedv2

Adapter
(124)
this model