llama3.2-3B-ft-reasoning
This model is a fine-tuned version of meta-llama/Llama-3.2-3B-Instruct on an unknown dataset.
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 16
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 1250
- mixed_precision_training: Native AMP
Framework versions
- PEFT 0.14.0
- Transformers 4.46.3
- Pytorch 2.5.1+xpu
- Datasets 3.2.0
- Tokenizers 0.20.3
- Downloads last month
- 10
Model tree for RayBernard/llama3.2-3B-ft-reasoning
Base model
meta-llama/Llama-3.2-3B-Instruct