Qwen3-30B-A3B-FP8-block
Model Overview
- Model Architecture: Qwen3MoeForCausalLM
- Input: Text
 - Output: Text
 
 - Model Optimizations:
- Weight quantization: FP8
 - Activation quantization: FP8
 
 - Release Date:
 - Version: 1.0
 - Model Developers:: Red Hat
 
Quantized version of Qwen/Qwen3-30B-A3B.
Model Optimizations
This model was obtained by quantizing the weights and activations of Qwen/Qwen3-30B-A3B to FP8 data type. This optimization reduces the number of bits per parameter from 16 to 8, reducing the disk size and GPU memory requirements by approximately 50%. Only the weights and activations of the linear operators within transformers blocks of the language model are quantized.
Deployment
Use with vLLM
- Initialize vLLM server:
 
vllm serve RedHatAI/Qwen3-30B-A3B-FP8-block --tensor_parallel_size 4
- Send requests to the server:
 
from openai import OpenAI
# Modify OpenAI's API key and API base to use vLLM's API server.
openai_api_key = "EMPTY"
openai_api_base = "http://<your-server-host>:8000/v1"
client = OpenAI(
    api_key=openai_api_key,
    base_url=openai_api_base,
)
model = "RedHatAI/Qwen3-30B-A3B-FP8-block"
messages = [
    {"role": "user", "content": "Explain quantum mechanics clearly and concisely."},
]
outputs = client.chat.completions.create(
    model=model,
    messages=messages,
)
generated_text = outputs.choices[0].message.content
print(generated_text)
Creation
This model was quantized using the llm-compressor library as shown below.
Creation details
from transformers import AutoProcessor, Qwen3MoeForCausalLM
from llmcompressor import oneshot
from llmcompressor.modeling import replace_modules_for_calibration
from llmcompressor.modifiers.quantization import QuantizationModifier
MODEL_ID = "Qwen/Qwen3-30B-A3B"
# Load model.
model = Qwen3ForCausalLM.from_pretrained(MODEL_ID, dtype="auto")
processor = AutoProcessor.from_pretrained(MODEL_ID)
model = replace_modules_for_calibration(model)
# Configure the quantization algorithm and scheme.
# In this case, we:
#   * quantize the weights to fp8 with per-block quantization
#   * quantize the activations to fp8 with dynamic token activations
recipe = QuantizationModifier(
    targets="Linear",
    scheme="FP8_BLOCK",
    ignore=["lm_head"],
)
# Apply quantization.
oneshot(model=model, recipe=recipe)
# Save to disk in compressed-tensors format.
SAVE_DIR = MODEL_ID.rstrip("/").split("/")[-1] + "-FP8-block"
model.save_pretrained(SAVE_DIR)
processor.save_pretrained(SAVE_DIR)
Evaluation
The model was evaluated on the OpenLLM leaderboard task, using lm-evaluation-harness. vLLM was used for all evaluations.
Evaluation details
Openllm V1
lm_eval \
  --model vllm \
  --model_args pretrained="RedHatAI/Qwen3-30B-A3B-FP8-block",dtype=auto,add_bos_token=True,max_model_len=16384,tensor_parallel_size=2,gpu_memory_utilization=0.9,enable_chunked_prefill=True,trust_remote_code=True \
  --tasks openllm \
  --write_out \
  --batch_size auto \
  --show_config
Openllm V2
lm_eval \
  --model vllm \
  --model_args pretrained="RedHatAI/Qwen3-30B-A3B-FP8-block",dtype=auto,add_bos_token=False,max_model_len=16384,tensor_parallel_size=2,gpu_memory_utilization=0.7,disable_log_stats=True,enable_chunked_prefill=True,trust_remote_code=True \
  --tasks leaderboard \
  --apply_chat_template \
  --fewshot_as_multiturn \
  --write_out \
  --batch_size auto \
  --show_config
Coding Benchmarks
evalplus.evaluate --model "RedHatAI/Qwen3-30B-A3B-FP8-block" \
                  --dataset "humaneval" \
                  --backend vllm \
                  --tp 2 \
                  --greedy
evalplus.evaluate --model "RedHatAI/Qwen3-30B-A3B-FP8-block" \
                --dataset "mbpp" \
                --backend vllm \
                --tp 2 \
                --greedy
Accuracy
| Category | Metric | Qwen/Qwen3-30B-A3B | RedHatAI/Qwen3-30B-A3B-FP8-block | Recovery (%) | 
|---|---|---|---|---|
| OpenLLM V1 | ARC-Challenge (Acc-Norm, 25-shot) | 69.28 | 69.88 | 100.86 | 
| GSM8K (Strict-Match, 5-shot) | 89.99 | 89.16 | 99.07 | |
| HellaSwag (Acc-Norm, 10-shot) | 77.64 | 77.41 | 99.71 | |
| MMLU (Acc, 5-shot) | 79.50 | 79.37 | 99.84 | |
| TruthfulQA (MC2, 0-shot) | 53.20 | 53.93 | 101.38 | |
| Winogrande (Acc, 5-shot) | 72.30 | 72.69 | 100.55 | |
| Average Score | 73.65 | 73.74 | 100.12 | |
| OpenLLM V2 | IFEval (Inst Level Strict Acc, 0-shot) | 48.68 | 47.84 | 98.28 | 
| BBH (Acc-Norm, 3-shot) | 32.46 | 32.06 | 98.77 | |
| Math-Hard (Exact-Match, 4-shot) | 18.81 | 18.96 | 100.80 | |
| GPQA (Acc-Norm, 0-shot) | 24.16 | 24.75 | 102.43 | |
| MUSR (Acc-Norm, 0-shot) | 38.62 | 40.48 | 104.79 | |
| MMLU-Pro (Acc, 5-shot) | 23.15 | 25.66 | 110.80 | |
| Average Score | 30.98 | 31.62 | 102.07 | |
| Coding | HumanEval pass@1 | 93.30 | 93.90 | 100.64 | 
| HumanEval+ pass@1 | 87.80 | 88.40 | 100.68 | |
| MBPP pass@1 | 86.00 | 85.20 | 99.06 | |
| MBPP+ pass@1 | 73.00 | 73.30 | 100.41 | 
- Downloads last month
 - 35