Hikari Noob v-pred 0.5

image/jpeg

Civitai model page: https://civitai.com/models/938672

Fine-tuned NoobAI-XL(v-prediction) and merged SPO LoRA

NoobAI-XL(v-prediction)をファインチューンし、SPOをマージしました。

Features/特徴

  • Improved stability and quality.
  • Works with samplers other than Euler.
  • Good results with only 10 steps (12 steps or more recommended)
  • Fixed a problem in which the quality of output was significantly degraded when the number of tokens exceeded 76.
  • The base style is not strong and can be restyled by prompts or LoRAs.
  • 安定性と品質を改善
  • わずか10ステップでよい結果を得られます(ただし12ステップ以上を推奨)
  • Zero Terminal SNRの代わりにNoise Offsetを使用することでEuler以外のサンプラーでも利用できるようにしました。
  • トークン数が76を超えると出力の品質が著しく低下する問題を修正しました。
  • 素の画風は強くないので、プロンプトやLoRAによる画風変更ができます。

Requirements / 動作要件

  • AUTOMATIC1111 WebUI on dev branch / devブランチ上のAUTOMATIC1111 WebUI
  • Latest version of ComfyUI / 最新版のComfyUI
  • Latest version of Forge or reForge / 最新版のForgeまたはreForge

Instruction for AUTOMATIC1111 / AUTOMATIC1111の導入手順

  1. Switch branch to dev (Run this command in the root directory of the webui: git checkout -b dev origin/dev or use Github Desktop)
  2. Use the model as usual!

(日本語)

  1. devブランチに切り替えます(次のコマンドをwebui直下で実行します: git checkout -b dev origin/dev またはGithub Desktopを使う)
  2. 通常通りモデルを使用します。

Example Workflow for ComfyUI / ComfyUIサンプルワークフロー

Download it from here

Prompt Guidelines / プロンプト記法

Almost same as the base model/ベースモデルとおおむね同じ

To improve the quality of background, add simple background, transparent background to Negative Prompt.

Recommended Prompt / 推奨プロンプト

Positive: None/無し(Works good without masterpiece, best quality / masterpiece, best quality無しでおk)

Negative: worst quality, low quality, bad quality, lowres, jpeg artifacts, unfinished, photoshop \(medium\), abstract or empty(または無し)

Recommended Settings / 推奨設定

Steps: 10-24

Sampler: DPM++ 2M(dpmpp_2m)

Scheduler: Simple

Guidance Scale: 3.5-7

Hires.fix

Hires upscaler: 4x-UltraSharp or Latent(nearest-exact)

Denoising strength: 0.4-0.5(0.65-0.7 for latent)

Merge recipe(Weighted sum)

I made 6 Illustrious-based models and merged them.

  • Stage 0: finetunes v-pred test model with AI-generated images

  • Stage 1: finetunes stage 0 model with 300 scenery images from Gelbooru

  • Stage 2: Finetune and merge(see below)

*A-F,sd15: finetuned stage1(ReLoRA)

  • A * 0.6 + B * 0.4 = tmp1
  • tmp1 * 0.6 + C * 0.4 = tmp2
  • tmp2 * 0.7 + F * 0.3 = tmp3
  • tmp3 * 0.7 + E * 0.3 = tmp4
  • tmp4 * 0.5 + D * 0.5 = tmp5
  • tmp5 * 0.65 + sd15 * 0.35 = tmp6
  • tmp6 + SPO LoRA = Result

Training scripts:

sd-scripts

Notice

This model is licensed under Fair AI Public License 1.0-SD

If you make modify this model, you must share both your changes and the original license.

You are prohibited from monetizing any close-sourced fine-tuned / merged model, which disallows the public from accessing the model's source code / weights and its usages.

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.

Model tree for RedRayz/hikari_noob_v-pred_0.5

Finetuned
(82)
this model
Finetunes
2 models