zephyr-7b-dpo-qlora / README.md
RedaAlami's picture
Model save
08b8142 verified
|
raw
history blame
2.56 kB
metadata
base_model: mistralai/Mistral-7B-v0.1
library_name: peft
license: apache-2.0
tags:
  - trl
  - dpo
  - generated_from_trainer
model-index:
  - name: zephyr-7b-dpo-qlora
    results: []

zephyr-7b-dpo-qlora

This model is a fine-tuned version of mistralai/Mistral-7B-v0.1 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1964.4768
  • Rewards/chosen: -0.1407
  • Rewards/rejected: -0.2359
  • Rewards/accuracies: 0.7243
  • Rewards/margins: 0.0952
  • Logps/rejected: -25.2353
  • Logps/chosen: -15.6615
  • Logits/rejected: -6.0582
  • Logits/chosen: -5.0283

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • total_eval_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen
2178.8832 0.3017 100 2139.6340 -0.1014 -0.1518 0.6781 0.0504 -16.8316 -11.7293 -3.3193 -3.1137
1986.1408 0.6033 200 1989.8781 -0.1408 -0.2280 0.7055 0.0872 -24.4503 -15.6687 -6.1921 -5.2910
2000.1098 0.9050 300 1964.4768 -0.1407 -0.2359 0.7243 0.0952 -25.2353 -15.6615 -6.0582 -5.0283

Framework versions

  • PEFT 0.12.0
  • Transformers 4.43.3
  • Pytorch 2.4.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1