Edit model card

klue-sroberta-base-continue-learning-by-mnr

This model is a fine-tuned version of bespin-global/klue-sroberta-base-continue-learning-by-mnr on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1892

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss
4.3729 1.0 68 4.2196
4.024 2.0 136 3.6878
3.433 3.0 204 3.0879
2.9423 4.0 272 2.5783
2.361 5.0 340 2.1306
1.8922 6.0 408 1.7540
1.6961 7.0 476 1.4740
1.4765 8.0 544 1.1773
1.3676 9.0 612 0.9409
1.0795 10.0 680 0.7687
0.9284 11.0 748 0.6190
0.6903 12.0 816 0.5083
0.7517 13.0 884 0.4213
0.652 14.0 952 0.3639
0.3433 15.0 1020 0.3037
0.4135 16.0 1088 0.2615
0.2747 17.0 1156 0.2295
0.2824 18.0 1224 0.2061
0.234 19.0 1292 0.1940
0.262 20.0 1360 0.1892

Framework versions

  • Transformers 4.46.2
  • Pytorch 2.4.0+cu121
  • Datasets 2.19.0
  • Tokenizers 0.20.3
Downloads last month
21
Safetensors
Model size
111M params
Tensor type
F32
·
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for Redstone-WB/klue-sroberta-base-continue-learning-by-mnr