cleantech-cls / README.md
Rel8ed's picture
Update README.md
f4863ec verified
|
raw
history blame
4.15 kB
---
widget:
- text: "[METAKEYWORD] [TITLE] [META] [ABOUT] [HOME] welcome to our website where we explore innovative technologies for a sustainable future."
output:
- label: POSITIVE
score: 0.8
- label: NEGATIVE
score: 0.2
- text: "[METAKEYWORD] [TITLE] [META] [ABOUT] [HOME] This is cell phone marketplace"
output:
- label: POSITIVE
score: 0.1
- label: NEGATIVE
score: 0.9
---
## Examples
Here are some examples of how to use this model in Python:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("Rel8ed/cleantech-cls")
model = AutoModelForCausalLM.from_pretrained("Rel8ed/cleantech-cls")
input_prompt = "[METAKEYWORD] innovation, technology, clean energy [TITLE] innovative clean energy solutions [META]" \
"leading provider of clean energy solutions. [ABOUT] we are committed to reducing environmental impact through" \
"cutting-edge clean energy solutions. [HOME] welcome to our website where we explore innovative technologies for a sustainable future."
inputs = tokenizer.encode(input_prompt, return_tensors='pt')
output = model.generate(inputs, max_length=50, num_return_sequences=5)
print("Generated text:")
for i, output in enumerate(outputs):
print(f"{i+1}: {tokenizer.decode(output, skip_special_tokens=True)}")
```
## Preprocess text
```python
import re
def normalize(s, truncate=100):
# Replace "\n" with " "
s = s.replace("\n", " ")
# Keep only letters (including accented letters) and spaces
s = re.sub(r"[^a-zA-Zà-üÀ-Ü ]", "", s)
# Split the string into words, truncate to the first 100 words, and join back into a string
words = s.split()
truncated = words[:truncate]
s = " ".join(truncated)
# Remove additional spaces
s = re.sub(r"\s+", " ", s)
return s
def create_full_text(homepageText,metakeywords = "", title = "", meta = "", aboutText = "", truncate_limit=100):
return (
"[METAKEYWORD] " + normalize(metakeywords, truncate=truncate_limit) +
" [TITLE] " + normalize(title, truncate=truncate_limit) +
" [META] " + normalize(meta, truncate=truncate_limit) +
" [ABOUT] " + normalize(aboutText, truncate=truncate_limit) +
# Assuming we want to normalize homepageText with a much higher limit or no truncation
" [HOME] " + normalize(homepageText, truncate=truncate_limit)
).strip()
# Sample raw inputs
metakeywords = "Green Energy, Sustainability"
meta = "Exploring innovative solutions for a sustainable future."
homepageText = "Welcome to our green energy platform where we share insights and innovations..."
aboutText = "We are committed to advancing green energy solutions through research and development."
title = "Green Energy Innovations"
# Applying your preprocessing steps
full_text = create_full_text(metakeywords, title, meta, aboutText, homepageText)
print(full_text)
```
## Simple usage
```python
from transformers import pipeline
import re
model_name_or_path = "Rel8ed/cleantech-cls"
classifier = pipeline('text-classification', model=model_name_or_path, max_length=512)
def normalize(s, truncate=100):
s = s.replace("\n", " ")
s = re.sub(r"[^a-zA-Zà-üÀ-Ü ]", "", s)
words = s.split()
truncated = words[:truncate]
s = " ".join(truncated)
s = re.sub(r"\s+", " ", s)
return s
def create_full_text(homepageText,metakeywords = "", title = "", meta = "", aboutText = "", truncate_limit=100):
return (
"[METAKEYWORD] " + normalize(metakeywords, truncate=truncate_limit) +
" [TITLE] " + normalize(title, truncate=truncate_limit) +
" [META] " + normalize(meta, truncate=truncate_limit) +
" [ABOUT] " + normalize(aboutText, truncate=truncate_limit) +
# Assuming we want to normalize homepageText with a much higher limit or no truncation
" [HOME] " + normalize(homepageText, truncate=truncate_limit)
).strip()
text = "Welcome to our green energy platform where we share insights and innovations"
predictions = classifier(create_full_text(text))
```