YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
Quantization made by Richard Erkhov.
MultiPL-T-StarCoderBase_1b - AWQ
- Model creator: https://huggingface.co/nuprl/
- Original model: https://huggingface.co/nuprl/MultiPL-T-StarCoderBase_1b/
Original model description:
license: bigscience-openrail-m library_name: transformers tags: - code - gpt_bigcode datasets: - nuprl/MultiPL-T metrics: - code_eval model-index: - name: MultiPLCoder-1b-OCaml results: - task: type: text-generation dataset: name: MultiPL-HumanEval (Lua) type: nuprl/MultiPL-E metrics: - type: pass@1 value: 0.173 name: pass@1 verified: true - type: pass@1 value: 0.113 name: pass@1 verified: true - type: pass@1 value: 0.097 name: pass@1 verified: true
MultiPLCoder-1b
1 billion parameter version of MultiPLCoder, a set of StarCoder-based models finetuned on the MultiPL-T dataset. These models are state-of-the-art at low-resource languages, such as: Lua, Racket, and OCaml.
Language Revision Index
This is the revision index for the best-performing models for their respective langauge.
Langauge | Revision ID | Epoch |
---|---|---|
Lua | 7e96d931547e342ad0661cdd91236fe4ccf52545 |
3 |
Racket | 2cdc541bee1db4da80c0b43384b0d6a0cacca5b2 |
5 |
OCaml | e8a24f9e2149cbda8c3cca264a53c2b361b7a031 |
6 |
Usage
To utilize one of the models in this repository, you must first select a commit revision for that model from the table above. For example, to use the Lua model:
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("nuprl/MultiPLCoder-1b")
lua_revision="7e96d931547e342ad0661cdd91236fe4ccf52545"
model = AutoModelForCausalLM.from_pretrained("nuprl/MultiPLCoder-1b", revision=lua_revision)
Note that the model's default configuration does not enable caching, therefore you must specify to use the cache on generation.
toks = tokenizer.encode("-- Hello World", return_tensors="pt")
out = model.generate(toks, use_cache=True, do_sample=True, temperature=0.2, top_p=0.95, max_length=50)
print(tokenizer.decode(out[0], skip_special_tokens=True))
-- Hello World!
-- :param name: The name of the person to say hello to
-- :return: A greeting
local function say_hello(name)
return "Hello ".. name
end
- Downloads last month
- 5