RichardErkhov's picture
uploaded readme
59d77bd verified

Quantization made by Richard Erkhov.

Github

Discord

Request more models

falcon-7b-instruct - bnb 8bits

Original model description:

datasets: - tiiuae/falcon-refinedweb language: - en inference: true new_version: tiiuae/falcon-11B widget: - text: "Hey Falcon! Any recommendations for my holidays in Abu Dhabi?" example_title: "Abu Dhabi Trip" - text: "What's the Everett interpretation of quantum mechanics?" example_title: "Q/A: Quantum & Answers" - text: "Give me a list of the top 10 dive sites you would recommend around the world." example_title: "Diving Top 10" - text: "Can you tell me more about deep-water soloing?" example_title: "Extreme sports" - text: "Can you write a short tweet about the Apache 2.0 release of our latest AI model, Falcon LLM?" example_title: "Twitter Helper" - text: "What are the responsabilities of a Chief Llama Officer?" example_title: "Trendy Jobs" license: apache-2.0

✨ Falcon-7B-Instruct

Falcon-7B-Instruct is a 7B parameters causal decoder-only model built by TII based on Falcon-7B and finetuned on a mixture of chat/instruct datasets. It is made available under the Apache 2.0 license.

Paper coming soon 😊.

πŸ€— To get started with Falcon (inference, finetuning, quantization, etc.), we recommend reading this great blogpost fron HF!

Why use Falcon-7B-Instruct?

πŸ’¬ This is an instruct model, which may not be ideal for further finetuning. If you are interested in building your own instruct/chat model, we recommend starting from Falcon-7B.

πŸ”₯ Looking for an even more powerful model? Falcon-40B-Instruct is Falcon-7B-Instruct's big brother!

from transformers import AutoTokenizer, AutoModelForCausalLM
import transformers
import torch

model = "tiiuae/falcon-7b-instruct"

tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    tokenizer=tokenizer,
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto",
)
sequences = pipeline(
   "Girafatron is obsessed with giraffes, the most glorious animal on the face of this Earth. Giraftron believes all other animals are irrelevant when compared to the glorious majesty of the giraffe.\nDaniel: Hello, Girafatron!\nGirafatron:",
    max_length=200,
    do_sample=True,
    top_k=10,
    num_return_sequences=1,
    eos_token_id=tokenizer.eos_token_id,
)
for seq in sequences:
    print(f"Result: {seq['generated_text']}")

πŸ’₯ Falcon LLMs require PyTorch 2.0 for use with transformers!

For fast inference with Falcon, check-out Text Generation Inference! Read more in this blogpost.

You will need at least 16GB of memory to swiftly run inference with Falcon-7B-Instruct.

Model Card for Falcon-7B-Instruct

Model Details

Model Description

  • Developed by: https://www.tii.ae;
  • Model type: Causal decoder-only;
  • Language(s) (NLP): English and French;
  • License: Apache 2.0;
  • Finetuned from model: Falcon-7B.

Model Source

  • Paper: coming soon.

Uses

Direct Use

Falcon-7B-Instruct has been finetuned on a mixture of instruct and chat datasets.

Out-of-Scope Use

Production use without adequate assessment of risks and mitigation; any use cases which may be considered irresponsible or harmful.

Bias, Risks, and Limitations

Falcon-7B-Instruct is mostly trained on English data, and will not generalize appropriately to other languages. Furthermore, as it is trained on a large-scale corpora representative of the web, it will carry the stereotypes and biases commonly encountered online.

Recommendations

We recommend users of Falcon-7B-Instruct to develop guardrails and to take appropriate precautions for any production use.

How to Get Started with the Model

from transformers import AutoTokenizer, AutoModelForCausalLM
import transformers
import torch

model = "tiiuae/falcon-7b-instruct"

tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    tokenizer=tokenizer,
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto",
)
sequences = pipeline(
   "Girafatron is obsessed with giraffes, the most glorious animal on the face of this Earth. Giraftron believes all other animals are irrelevant when compared to the glorious majesty of the giraffe.\nDaniel: Hello, Girafatron!\nGirafatron:",
    max_length=200,
    do_sample=True,
    top_k=10,
    num_return_sequences=1,
    eos_token_id=tokenizer.eos_token_id,
)
for seq in sequences:
    print(f"Result: {seq['generated_text']}")

Training Details

Training Data

Falcon-7B-Instruct was finetuned on a 250M tokens mixture of instruct/chat datasets.

Data source Fraction Tokens Description
Bai ze 65% 164M chat
GPT4All 25% 62M instruct
GPTeacher 5% 11M instruct
RefinedWeb-English 5% 13M massive web crawl

The data was tokenized with the Falcon-7B/40B tokenizer.

Evaluation

Paper coming soon.

See the OpenLLM Leaderboard for early results.

Note that this model variant is not optimized for NLP benchmarks.

Technical Specifications

For more information about pretraining, see Falcon-7B.

Model Architecture and Objective

Falcon-7B is a causal decoder-only model trained on a causal language modeling task (i.e., predict the next token).

The architecture is broadly adapted from the GPT-3 paper (Brown et al., 2020), with the following differences:

Hyperparameter Value Comment
Layers 32
d_model 4544 Increased to compensate for multiquery
head_dim 64 Reduced to optimise for FlashAttention
Vocabulary 65024
Sequence length 2048

Compute Infrastructure

Hardware

Falcon-7B-Instruct was trained on AWS SageMaker, on 32 A100 40GB GPUs in P4d instances.

Software

Falcon-7B-Instruct was trained a custom distributed training codebase, Gigatron. It uses a 3D parallelism approach combined with ZeRO and high-performance Triton kernels (FlashAttention, etc.)

Citation

Paper coming soon 😊. In the meanwhile, you can use the following information to cite:

@article{falcon40b,
  title={{Falcon-40B}: an open large language model with state-of-the-art performance},
  author={Almazrouei, Ebtesam and Alobeidli, Hamza and Alshamsi, Abdulaziz and Cappelli, Alessandro and Cojocaru, Ruxandra and Debbah, Merouane and Goffinet, Etienne and Heslow, Daniel and Launay, Julien and Malartic, Quentin and Noune, Badreddine and Pannier, Baptiste and Penedo, Guilherme},
  year={2023}
}

To learn more about the pretraining dataset, see the πŸ““ RefinedWeb paper.

@article{refinedweb,
  title={The {R}efined{W}eb dataset for {F}alcon {LLM}: outperforming curated corpora with web data, and web data only},
  author={Guilherme Penedo and Quentin Malartic and Daniel Hesslow and Ruxandra Cojocaru and Alessandro Cappelli and Hamza Alobeidli and Baptiste Pannier and Ebtesam Almazrouei and Julien Launay},
  journal={arXiv preprint arXiv:2306.01116},
  eprint={2306.01116},
  eprinttype = {arXiv},
  url={https://arxiv.org/abs/2306.01116},
  year={2023}
}

License

Falcon-7B-Instruct is made available under the Apache 2.0 license.

Contact

falconllm@tii.ae