RichardErkhov's picture
uploaded readme
f548727 verified

Quantization made by Richard Erkhov.

Github

Discord

Request more models

gemma-2-2b - GGUF

Name Quant method Size
gemma-2-2b.Q2_K.gguf Q2_K 1.15GB
gemma-2-2b.IQ3_XS.gguf IQ3_XS 1.22GB
gemma-2-2b.IQ3_S.gguf IQ3_S 1.27GB
gemma-2-2b.Q3_K_S.gguf Q3_K_S 1.27GB
gemma-2-2b.IQ3_M.gguf IQ3_M 1.3GB
gemma-2-2b.Q3_K.gguf Q3_K 1.36GB
gemma-2-2b.Q3_K_M.gguf Q3_K_M 1.36GB
gemma-2-2b.Q3_K_L.gguf Q3_K_L 1.44GB
gemma-2-2b.IQ4_XS.gguf IQ4_XS 1.47GB
gemma-2-2b.Q4_0.gguf Q4_0 1.52GB
gemma-2-2b.IQ4_NL.gguf IQ4_NL 1.53GB
gemma-2-2b.Q4_K_S.gguf Q4_K_S 1.53GB
gemma-2-2b.Q4_K.gguf Q4_K 1.59GB
gemma-2-2b.Q4_K_M.gguf Q4_K_M 1.59GB
gemma-2-2b.Q4_1.gguf Q4_1 1.64GB
gemma-2-2b.Q5_0.gguf Q5_0 1.75GB
gemma-2-2b.Q5_K_S.gguf Q5_K_S 1.75GB
gemma-2-2b.Q5_K.gguf Q5_K 1.79GB
gemma-2-2b.Q5_K_M.gguf Q5_K_M 1.79GB
gemma-2-2b.Q5_1.gguf Q5_1 1.87GB
gemma-2-2b.Q6_K.gguf Q6_K 2.0GB
gemma-2-2b.Q8_0.gguf Q8_0 2.59GB

Original model description:

language: - en library_name: transformers license: gemma tags: - unsloth - transformers - gemma2 - gemma

Reminder to use the dev version Transformers:

pip install git+https://github.com/huggingface/transformers.git

Finetune Gemma 2, Llama 3.1, Mistral 2-5x faster with 70% less memory via Unsloth!

Directly quantized 4bit model with bitsandbytes.

We have a Google Colab Tesla T4 notebook for Gemma 2 (2B) here: https://colab.research.google.com/drive/1weTpKOjBZxZJ5PQ-Ql8i6ptAY2x-FWVA?usp=sharing

We have a Google Colab Tesla T4 notebook for Gemma 2 (9B) here: https://colab.research.google.com/drive/1vIrqH5uYDQwsJ4-OO3DErvuv4pBgVwk4?usp=sharing

✨ Finetune for Free

All notebooks are beginner friendly! Add your dataset, click "Run All", and you'll get a 2x faster finetuned model which can be exported to GGUF, vLLM or uploaded to Hugging Face.

Unsloth supports Free Notebooks Performance Memory use
Llama 3 (8B) ▶️ Start on Colab 2.4x faster 58% less
Gemma 2 (9B) ▶️ Start on Colab 2x faster 63% less
Mistral (9B) ▶️ Start on Colab 2.2x faster 62% less
Phi 3 (mini) ▶️ Start on Colab 2x faster 63% less
TinyLlama ▶️ Start on Colab 3.9x faster 74% less
CodeLlama (34B) A100 ▶️ Start on Colab 1.9x faster 27% less
Mistral (7B) 1xT4 ▶️ Start on Kaggle 5x faster* 62% less
DPO - Zephyr ▶️ Start on Colab 1.9x faster 19% less