metadata
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: emotion_face_image_classification
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.55
emotion_face_image_classification
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 1.2556
- Accuracy: 0.55
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 10 | 2.0561 | 0.1437 |
No log | 2.0 | 20 | 1.9946 | 0.325 |
No log | 3.0 | 30 | 1.9059 | 0.3563 |
No log | 4.0 | 40 | 1.7640 | 0.3937 |
No log | 5.0 | 50 | 1.6329 | 0.3812 |
No log | 6.0 | 60 | 1.5935 | 0.375 |
No log | 7.0 | 70 | 1.5206 | 0.4313 |
No log | 8.0 | 80 | 1.4580 | 0.4813 |
No log | 9.0 | 90 | 1.4422 | 0.4938 |
No log | 10.0 | 100 | 1.4297 | 0.4437 |
No log | 11.0 | 110 | 1.4020 | 0.5062 |
No log | 12.0 | 120 | 1.3344 | 0.5125 |
No log | 13.0 | 130 | 1.3541 | 0.5125 |
No log | 14.0 | 140 | 1.2990 | 0.5125 |
No log | 15.0 | 150 | 1.2482 | 0.5687 |
No log | 16.0 | 160 | 1.2726 | 0.4875 |
No log | 17.0 | 170 | 1.2523 | 0.5375 |
No log | 18.0 | 180 | 1.2857 | 0.4813 |
No log | 19.0 | 190 | 1.2476 | 0.5375 |
No log | 20.0 | 200 | 1.2991 | 0.4625 |
No log | 21.0 | 210 | 1.3108 | 0.5062 |
No log | 22.0 | 220 | 1.3052 | 0.5 |
No log | 23.0 | 230 | 1.2606 | 0.4813 |
No log | 24.0 | 240 | 1.1568 | 0.5687 |
No log | 25.0 | 250 | 1.2242 | 0.5437 |
No log | 26.0 | 260 | 1.2031 | 0.5875 |
No log | 27.0 | 270 | 1.1649 | 0.5625 |
No log | 28.0 | 280 | 1.3134 | 0.4938 |
No log | 29.0 | 290 | 1.2542 | 0.5062 |
No log | 30.0 | 300 | 1.1542 | 0.5687 |
No log | 31.0 | 310 | 1.1619 | 0.5625 |
No log | 32.0 | 320 | 1.2700 | 0.5 |
No log | 33.0 | 330 | 1.1943 | 0.55 |
No log | 34.0 | 340 | 1.1441 | 0.575 |
No log | 35.0 | 350 | 1.2405 | 0.5687 |
No log | 36.0 | 360 | 1.2228 | 0.5375 |
No log | 37.0 | 370 | 1.1598 | 0.6 |
No log | 38.0 | 380 | 1.1894 | 0.5687 |
No log | 39.0 | 390 | 1.2493 | 0.5188 |
No log | 40.0 | 400 | 1.1716 | 0.5687 |
No log | 41.0 | 410 | 1.1558 | 0.5813 |
No log | 42.0 | 420 | 1.2529 | 0.5312 |
No log | 43.0 | 430 | 1.2515 | 0.5625 |
No log | 44.0 | 440 | 1.2576 | 0.5188 |
No log | 45.0 | 450 | 1.1793 | 0.5687 |
No log | 46.0 | 460 | 1.2252 | 0.5625 |
No log | 47.0 | 470 | 1.1876 | 0.575 |
No log | 48.0 | 480 | 1.2288 | 0.5375 |
No log | 49.0 | 490 | 1.2623 | 0.5125 |
0.989 | 50.0 | 500 | 1.1603 | 0.5875 |
Framework versions
- Transformers 4.33.2
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.13.3