metadata
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: emotion_face_image_classification_v2
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.48125
emotion_face_image_classification_v2
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 1.5157
- Accuracy: 0.4813
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_ratio: 0.1
- lr_scheduler_warmup_steps: 150
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 0.8 | 2 | 2.0924 | 0.15 |
No log | 2.0 | 5 | 2.1024 | 0.0938 |
No log | 2.8 | 7 | 2.0935 | 0.1375 |
No log | 4.0 | 10 | 2.0893 | 0.15 |
No log | 4.8 | 12 | 2.0900 | 0.15 |
No log | 6.0 | 15 | 2.0987 | 0.0813 |
No log | 6.8 | 17 | 2.0901 | 0.1 |
No log | 8.0 | 20 | 2.0872 | 0.15 |
No log | 8.8 | 22 | 2.0831 | 0.1375 |
No log | 10.0 | 25 | 2.0750 | 0.1437 |
No log | 10.8 | 27 | 2.0744 | 0.175 |
No log | 12.0 | 30 | 2.0778 | 0.1437 |
No log | 12.8 | 32 | 2.0729 | 0.1812 |
No log | 14.0 | 35 | 2.0676 | 0.1625 |
No log | 14.8 | 37 | 2.0694 | 0.1688 |
No log | 16.0 | 40 | 2.0562 | 0.1625 |
No log | 16.8 | 42 | 2.0498 | 0.1938 |
No log | 18.0 | 45 | 2.0393 | 0.2188 |
No log | 18.8 | 47 | 2.0458 | 0.2062 |
No log | 20.0 | 50 | 2.0289 | 0.2125 |
No log | 20.8 | 52 | 2.0226 | 0.2437 |
No log | 22.0 | 55 | 1.9997 | 0.2625 |
No log | 22.8 | 57 | 1.9855 | 0.3187 |
No log | 24.0 | 60 | 1.9571 | 0.3187 |
No log | 24.8 | 62 | 1.9473 | 0.3375 |
No log | 26.0 | 65 | 1.9080 | 0.3187 |
No log | 26.8 | 67 | 1.8894 | 0.35 |
No log | 28.0 | 70 | 1.8407 | 0.375 |
No log | 28.8 | 72 | 1.8083 | 0.3438 |
No log | 30.0 | 75 | 1.7652 | 0.3563 |
No log | 30.8 | 77 | 1.7281 | 0.3563 |
No log | 32.0 | 80 | 1.6729 | 0.4062 |
No log | 32.8 | 82 | 1.6527 | 0.3937 |
No log | 34.0 | 85 | 1.6044 | 0.4562 |
No log | 34.8 | 87 | 1.5899 | 0.4313 |
No log | 36.0 | 90 | 1.5488 | 0.4313 |
No log | 36.8 | 92 | 1.5340 | 0.45 |
No log | 38.0 | 95 | 1.5227 | 0.4875 |
No log | 38.8 | 97 | 1.4846 | 0.4875 |
No log | 40.0 | 100 | 1.4579 | 0.4688 |
Framework versions
- Transformers 4.33.2
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.13.3