distilbert-base-uncased-lora-text-classification
This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.0005
- Accuracy: {'accuracy': 0.889}
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 250 | 0.5429 | {'accuracy': 0.833} |
0.4379 | 2.0 | 500 | 0.4558 | {'accuracy': 0.878} |
0.4379 | 3.0 | 750 | 0.6034 | {'accuracy': 0.876} |
0.2125 | 4.0 | 1000 | 0.7067 | {'accuracy': 0.892} |
0.2125 | 5.0 | 1250 | 0.8947 | {'accuracy': 0.875} |
0.0695 | 6.0 | 1500 | 0.8737 | {'accuracy': 0.886} |
0.0695 | 7.0 | 1750 | 0.9554 | {'accuracy': 0.889} |
0.0271 | 8.0 | 2000 | 0.9786 | {'accuracy': 0.894} |
0.0271 | 9.0 | 2250 | 0.9897 | {'accuracy': 0.893} |
0.0052 | 10.0 | 2500 | 1.0005 | {'accuracy': 0.889} |
Framework versions
- PEFT 0.13.2
- Transformers 4.44.2
- Pytorch 2.5.0+cu121
- Tokenizers 0.19.1
- Downloads last month
- 2
Model tree for RickyLinus/distilbert-base-uncased-lora-text-classification
Base model
distilbert/distilbert-base-uncased